Get Free Shipping on orders over $79
Deep Learning for Computational Imaging - Reinhard Heckel

Deep Learning for Computational Imaging

By: Reinhard Heckel

eText | 30 April 2025

At a Glance

eText


$63.45

or 4 interest-free payments of $15.86 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Computational techniques for image reconstruction problems enable imaging technologies including high-resolution microscopy, astronomy and seismology, computed tomography, and magnetic resonance imaging. Until recently, methods for solving such inverse problems were derived by experts without any learning. Now, the best performing image reconstruction methods are based on deep learning.



This textbook gives the first comprehensive introduction to deep learning based image reconstruction methods. This book first introduces important inverse problems in imaging, including denoising and reconstructing an image from few and noisy measurements, and explains what makes those problems hard and interesting. Then, the book briefly discusses traditional optimization and sparsity based reconstruction methods, as well as optimization techniques as a basis for training and deriving deep neural networks for image reconstruction.



The main part of the book is about how to solve image reconstruction problems with deep learning techniques: The book first disuses supervised deep learning approaches that map a measurement to an image as well as network architectures for imaging including convolutional neural networks and transformers. Then, reconstruction approaches based on generative models such as variational autoencoders and diffusion models are discussed, and how un-trained neural networks and implicit neural representations enable signal and image reconstruction. The book ends with a discussion on the robustness of deep learning based reconstruction as well as a discussion on the important topic of evaluating models and datasets, which are a critical ingredient of deep learning based imaging.

on
Desktop
Tablet
Mobile

More in Applied Mathematics

Mathematics for Engineers - Ritu Shrivastava

eBOOK

Markov Chains : Theory and Applications - C.R. Rao

eBOOK

RRP $359.04

$323.99

10%
OFF
Grape Explications - Neal D. Hulkower

eBOOK

RRP $18.69

$17.99

Pi the Laws of Duality - G. Neal

eBOOK

Discrete Mathematics - Julian Ting

eBOOK

This product is categorised by