Get Free Shipping on orders over $79
Deep Learning at Scale : At the Intersection of Hardware, Software, and Data - Suneeta  Mall

Deep Learning at Scale

At the Intersection of Hardware, Software, and Data

By: Suneeta Mall

eText | 18 June 2024 | Edition Number 1

At a Glance

eText


$75.89

or 4 interest-free payments of $18.97 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Bringing a deep-learning project into production at scale is quite challenging. To successfully scale your project, a foundational understanding of full stack deep learning, including the knowledge that lies at the intersection of hardware, software, data, and algorithms, is required.

This book illustrates complex concepts of full stack deep learning and reinforces them through hands-on exercises to arm you with tools and techniques to scale your project. A scaling effort is only beneficial when it's effective and efficient. To that end, this guide explains the intricate concepts and techniques that will help you scale effectively and efficiently.

You'll gain a thorough understanding of:

  • How data flows through the deep-learning network and the role the computation graphs play in building your model
  • How accelerated computing speeds up your training and how best you can utilize the resources at your disposal
  • How to train your model using distributed training paradigms, i.e., data, model, and pipeline parallelism
  • How to leverage PyTorch ecosystems in conjunction with NVIDIA libraries and Triton to scale your model training
  • Debugging, monitoring, and investigating the undesirable bottlenecks that slow down your model training
  • How to expedite the training lifecycle and streamline your feedback loop to iterate model development
  • A set of data tricks and techniques and how to apply them to scale your training model
  • How to select the right tools and techniques for your deep-learning project
  • Options for managing the compute infrastructure when running at scale
on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK