Get Free Shipping on orders over $79
Data Orchestration in Deep Learning Accelerators : Synthesis Lectures on Computer Architecture - Tushar Krishna

Data Orchestration in Deep Learning Accelerators

By: Tushar Krishna, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer, Ananda Samajdar

eBook | 18 August 2020

At a Glance

eBook


RRP $94.83

$85.99

or 4 interest-free payments of $21.50 with

 or 

Instant Digital Delivery to your Kobo Reader App

This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

on

More in Computer Architecture & Logic Design

Quantum Computing - Alex Wood

eBOOK

Think Distributed Systems - Dominik Tornow

eBOOK