Get Free Shipping on orders over $79
Control Theory and Optimization I : Homogeneous Spaces and the Riccati Equation in the Calculus of Variations - M.I. Zelikin

Control Theory and Optimization I

Homogeneous Spaces and the Riccati Equation in the Calculus of Variations

By: M.I. Zelikin

eText | 14 March 2013

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book is devoted to the development of geometrie methods for studying and revealing geometrie aspects of the theory of differential equations with quadratie right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. The book contains the following three parts, to each of which aseparate book could be devoted: 1. the classieal calculus of variations and the geometrie theory of the Riccati equation (Chaps. 1-5), 2. complex Riccati equations as flows on Cartan-Siegel homogeneity da­ mains (Chap. 6), and 3. the minimization problem for multiple integrals and Riccati partial dif­ ferential equations (Chaps. 7 and 8). Chapters 1-4 are mainly auxiliary. To make the presentation complete and self-contained, I here review the standard facts (needed in what folIows) from the calculus of variations, Lie groups and algebras, and the geometry of Grass­ mann and Lagrange-Grassmann manifolds. When choosing these facts, I pre­ fer to present not the most general but the simplest assertions. Moreover, I try to organize the presentation so that it is not obscured by formal and technical details and, at the same time, is sufficiently precise. Other chapters contain my results concerning the matrix double ratio, com­ plex Riccati equations, and also the Riccati partial differential equation, whieh the minimization problem for a multiple integral. arises in The book is based on a course of lectures given in the Department of Me­ and Mathematics of Moscow State University during several years.
on
Desktop
Tablet
Mobile

More in Differential & Riemannian Geometry

Nonlinear Continua - Eduardo N. Dvorkin

eTEXT

$159.01

Generalized Curvatures - Jean-Marie Morvan

eTEXT

Mixed Hodge Structures - Chris A.M. Peters

eTEXT