Get Free Shipping on orders over $79
Computational Intelligence for Network Structure Analytics - Maoguo Gong

Computational Intelligence for Network Structure Analytics

By: Maoguo Gong, Qing Cai, Lijia Ma, Shanfeng Wang, Yu Lei

eText | 19 September 2017

At a Glance

eText


$189.00

or 4 interest-free payments of $47.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book presents the latest research advances in complex network structure analytics based on computational intelligence (CI) approaches, particularly evolutionary optimization. Most if not all network issues are actually optimization problems, which are mostly NP-hard and challenge conventional optimization techniques. To effectively and efficiently solve these hard optimization problems, CI based network structure analytics offer significant advantages over conventional network analytics techniques. Meanwhile, using CI techniques may facilitate smart decision making by providing multiple options to choose from, while conventional methods can only offer a decision maker a single suggestion. In addition, CI based network structure analytics can greatly facilitate network modeling and analysis. And employing CI techniques to resolve network issues is likely to inspire other fields of study such as recommender systems, system biology, etc., which will in turn expand CI's scope and applications.

As a comprehensive text, the book covers a range of key topics, including network community discovery, evolutionary optimization, network structure balance analytics, network robustness analytics, community-based personalized recommendation, influence maximization, and biological network alignment.

Offering a rich blend of theory and practice, the book is suitable for students, researchers and practitioners interested in network analytics and computational intelligence, both as a textbook and as a reference work.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK