Get Free Shipping on orders over $79
Combinatorial Set Theory : With a Gentle Introduction to Forcing - Lorenz J. Halbeisen

Combinatorial Set Theory

With a Gentle Introduction to Forcing

By: Lorenz J. Halbeisen

eText | 26 May 2025 | Edition Number 3

At a Glance

eText


$249.00

or 4 interest-free payments of $62.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book, now in a revised and extended third edition, provides a comprehensive and accessible introduction to modern axiomatic set theory. After an overview of basic notions in combinatorics and first-order logic, and discussing in great detail the axioms of set theory, the author outlines in the second part the main topics of classical set theory, including Ramsey theory and the axiom of choice. As an application of the axiom of choice, a complete proof of Robinson's construction for doubling a ball by dividing it into only five parts is given. For the new edition, the chapter on permutation models has been extended, and recent results in set theory without the axiom of choice and about cardinal characteristics have been added. The third part explains the sophisticated technique of forcing from scratch, now including more details about iterated forcing. The technique is then used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In particular, it is shown that both Martin's Axiom and Suslin's Hypothesis are independent of the axioms of set theory. The final part, with a new chapter on Laver forcing, is mainly concerned with consistency results obtained by iterations of forcing notions such as Cohen forcing, Sacks forcing, and Mathias forcing. The part begins with an extended chapter on countable support iterations of proper forcing notions, now also including proofs of some preservation theorems such as preservation of properness and of certain ultrafilters. In the following chapters, various consistency results concerning possible relations between cardinal characteristics and the existence of Ramsey ultrafilters are presented. For example, a detailed proof of Shelah's astonishing construction of a model with finitely many Ramsey ultrafilters is given. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists, historical remarks, and related results at the end of the chapters, this book is also suitable for self-study.
on
Desktop
Tablet
Mobile

More in Mathematics

Men of Mathematics - E.T. Bell

eBOOK

Is God a Mathematician? - Mario Livio

eBOOK

The FTL Paper : Book Five - Tomas Londan

eBOOK