Get Free Shipping on orders over $79
Big Data Fundamentals : Concepts, Drivers & Techniques - Thomas Erl

Big Data Fundamentals

Concepts, Drivers & Techniques

By: Thomas Erl, Wajid Khattak, Paul Buhler

eText | 29 December 2015 | Edition Number 1

At a Glance

eText


$52.95

or 4 interest-free payments of $13.24 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
"This text should be required reading for everyone in contemporary business."
--Peter Woodhull, CEO, Modus21

"The one book that clearly describes and links Big Data concepts to business utility."
--Dr. Christopher Starr, PhD

"Simply, this is the best Big Data book on the market!"
--Sam Rostam, Cascadian IT Group

"...one of the most contemporary approaches I've seen to Big Data fundamentals..."
--Joshua M. Davis, PhD

The Definitive Plain-English Guide to Big Data for Business and Technology Professionals

Big Data Fundamentals provides a pragmatic, no-nonsense introduction to Big Data. Best-selling IT author Thomas Erl and his team clearly explain key Big Data concepts, theory and terminology, as well as fundamental technologies and techniques. All coverage is supported with case study examples and numerous simple diagrams.

The authors begin by explaining how Big Data can propel an organization forward by solving a spectrum of previously intractable business problems. Next, they demystify key analysis techniques and technologies and show how a Big Data solution environment can be built and integrated to offer competitive advantages.
  • Discovering Big Data's fundamental concepts and what makes it different from previous forms of data analysis and data science
  • Understanding the business motivations and drivers behind Big Data adoption, from operational improvements through innovation
  • Planning strategic, business-driven Big Data initiatives
  • Addressing considerations such as data management, governance, and security
  • Recognizing the 5 "V" characteristics of datasets in Big Data environments: volume, velocity, variety, veracity, and value
  • Clarifying Big Data's relationships with OLTP, OLAP, ETL, data warehouses, and data marts
  • Working with Big Data in structured, unstructured, semi-structured, and metadata formats
  • Increasing value by integrating Big Data resources with corporate performance monitoring
  • Understanding how Big Data leverages distributed and parallel processing
  • Using NoSQL and other technologies to meet Big Data's distinct data processing requirements
  • Leveraging statistical approaches of quantitative and qualitative analysis
  • Applying computational analysis methods, including machine learning

on
Desktop
Tablet
Mobile

More in Data Mining

Conquering the Decision Abyss - Keith Hartley

eBOOK

RRP $15.39

$14.99

Investing for Programmers - Stefan Papp

eBOOK

Data Engineering for Data-Driven Marketing - Balamurugan Baluswamy

eBOOK

RRP $186.40

$158.99

15%
OFF