Get Free Shipping on orders over $79
BERRU Predictive Modeling : Best Estimate Results with Reduced Uncertainties - Dan Gabriel Cacuci

BERRU Predictive Modeling

Best Estimate Results with Reduced Uncertainties

By: Dan Gabriel Cacuci

eText | 29 December 2018

At a Glance

eText


$269.01

or 4 interest-free payments of $67.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book addresses the experimental calibration of best-estimate numerical simulation models. The results of measurements and computations are never exact. Therefore, knowing only the nominal values of experimentally measured or computed quantities is insufficient for applications, particularly since the respective experimental and computed nominal values seldom coincide. In the author's view, the objective of predictive modeling is to extract "best estimate" values for model parameters and predicted results, together with "best estimate" uncertainties for these parameters and results. To achieve this goal, predictive modeling combines imprecisely known experimental and computational data, which calls for reasoning on the basis of incomplete, error-rich, and occasionally discrepant information. The customary methods used for data assimilation combine experimental and computational information by minimizing an a priori, user-chosen, "cost functional" (usually a quadratic functional that represents the weighted errors between measured and computed responses). In contrast to these user-influenced methods, the BERRU (Best Estimate Results with Reduced Uncertainties) Predictive Modeling methodology developed by the author relies on the thermodynamics-based maximum entropy principle to eliminate the need for relying on minimizing user-chosen functionals, thus generalizing the "data adjustment" and/or the "4D-VAR" data assimilation procedures used in the geophysical sciences. The BERRU predictive modeling methodology also provides a "model validation metric" which quantifies the consistency (agreement/disagreement) between measurements and computations. This "model validation metric" (or "consistency indicator") is constructed from parameter covariance matrices, response covariance matrices (measured and computed), and response sensitivities to model parameters. Traditional methods for computing response sensitivities are hampered by the "curse of dimensionality," which makes them impractical for applications to large-scale systems that involve many imprecisely known parameters. Reducing the computational effort required for precisely calculating the response sensitivities is paramount, and the comprehensive adjoint sensitivity analysis methodology developed by the author shows great promise in this regard, as shown in this book. After discarding inconsistent data (if any) using the consistency indicator, the BERRU predictive modeling methodology provides best-estimate values for predicted parameters and responses along with best-estimate reduced uncertainties (i.e., smaller predicted standard deviations) for the predicted quantities. Applying the BERRU methodology yields optimal, experimentally validated, "best estimate" predictive modeling tools for designing new technologies and facilities, while also improving on existing ones.  
on
Desktop
Tablet
Mobile

More in Engineering in General

SAFE : Science and Technology in the Age of Ter - Martha Baer

eBOOK

The Shabby Chic Home - Rachel Ashwell

eBOOK

Shabby Chic - Rachel Ashwell

eBOOK

$17.99

Star Commercial Spaces - Julio Fajardo

eBOOK