Get Free Shipping on orders over $79
Bayesian Hierarchical Models : With Applications Using R, Second Edition - Peter D. Congdon

Bayesian Hierarchical Models

With Applications Using R, Second Edition

By: Peter D. Congdon

eText | 16 September 2019 | Edition Number 2

At a Glance

eText


$102.30

or 4 interest-free payments of $25.57 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.

The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.

The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.

Features:

  • Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling
  • Includes many real data examples to illustrate different modelling topics
  • R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation
  • Software options and coding principles are introduced in new chapter on computing
  • Programs and data sets available on the book's website
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 30th September 2021

More in Probability & Statistics

untitled - TBC ANZ

eBOOK

$31.99

An Introduction to Stochastic Modeling - Gabriel Lord

eBOOK

RRP $145.41

$130.99

10%
OFF