Get Free Shipping on orders over $79
Bayesian Compressive Sensing for Site Characterization : Challenges in Geotechnical and Rock Engineering - Yu Wang

Bayesian Compressive Sensing for Site Characterization

By: Yu Wang, Tengyuan Zhao, Yue Hu, Zheng Guan, Kok-Kwang Phoon

eText | 12 December 2025 | Edition Number 1

At a Glance

eText


$344.30

or 4 interest-free payments of $86.08 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Site characterization is indispensable to good geotechnical or rock engineering practice as every site is unique, but technical, budget, time, or access constraints typically result in only a tiny fraction of the underground soil and rock in a site being visually inspected, sampled, or tested. This leads to a long- lasting challenge of sparse measurements in geo- sciences and engineering. This book introduces Bayesian compressive sensing or sampling (BCS) as a highly efficient spatial data analytic and simulation method for the efficient modelling of spatial geo- data from sparse measurements, with quantified reliability and uncertainty to further optimize site characterization. It provides the necessary theory and computational tools for setting up and solving a sparse spatial data modeling problem using BCS.

This book suits graduate students, academics, researchers, and engineers interested in site characterization from sparse measurements in geotechnical and rock engineering, and also those modeling other spatially varying phenomena such as air quality data, soil or water pollution data, and meteorological data. This is supplemented with a software called Analytics of Sparse Spatial Data using Bayesian compressive sampling/ sensing and illustrative examples, and enables hands- on experience of spatial data analytics and simulation using sparse measurements.

on
Desktop
Tablet
Mobile

More in Data Capture & Analysis

China's Megatrends : The 8 Pillars of a New Society - John Naisbitt

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

Transformers in Action - Nicole Koenigstein

eBOOK