Get Free Shipping on orders over $79
B-Series : Algebraic Analysis of Numerical Methods - John C. Butcher

B-Series

Algebraic Analysis of Numerical Methods

By: John C. Butcher

eText | 1 April 2021

At a Glance

eText


$209.00

or 4 interest-free payments of $52.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
B-series, also known as Butcher series, are an algebraic tool for analysing solutions to ordinary differential equations, including approximate solutions. Through the formulation and manipulation of these series, properties of numerical methods can be assessed. Runge-Kutta methods, in particular, depend on B-series for a clean and elegant approach to the derivation of high order and efficient methods. However, the utility of B-series goes much further and opens a path to the design and construction of highly accurate and efficient multivalue methods. This book offers a self-contained introduction to B-series by a pioneer of the subject. After a preliminary chapter providing background on differential equations and numerical methods, a broad exposition of graphs and trees is presented. This is essential preparation for the third chapter, in which the main ideas of B-series are introduced and developed. In chapter four, algebraic aspects are further analysed in the context of integration methods, a generalization of Runge-Kutta methods to infinite index sets. Chapter five, on explicit and implicit Runge-Kutta methods, contrasts the B-series and classical approaches. Chapter six, on multivalue methods, gives a traditional review of linear multistep methods and expands this to general linear methods, for which the B-series approach is both natural and essential. The final chapter introduces some aspects of geometric integration, from a B-series point of view. Placing B-series at the centre of its most important applications makes this book an invaluable resource for scientists, engineers and mathematicians who depend on computational modelling, not to mention computational scientists who carry out research on numerical methods in differential equations. In addition to exercises with solutions and study notes, a number of open-ended projects are suggested. This combination makes the book ideal as a textbook for specialised courses on numerical methods for differential equations, as well as suitable for self-study.
on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 2nd April 2022

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK

Enriques Surfaces I - François Cossec

eTEXT

The Monodromy Group - Henryk ?o??dek

eTEXT