Get Free Shipping on orders over $79
Applied Recommender Systems with Python : Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques - Akshay Kulkarni

Applied Recommender Systems with Python

Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques

By: Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, V Adithya Krishnan

eText | 21 November 2022

At a Glance

eText


$74.99

or 4 interest-free payments of $18.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.

You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.

By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.

What You Will Learn

  • Understand and implement different recommender systems techniques with Python
  • Employ popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorization
  • Build hybrid recommender systems that incorporate both content-based and collaborative filtering
  • Leverage machine learning, NLP, and deep learning for building recommender systems

Who This Book Is For

Data scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK