Get Free Shipping on orders over $79
AI Systems Performance Engineering : Optimizing Model Training and Inference Workloads with GPUs, CUDA, and PyTorch - Chris Fregly

AI Systems Performance Engineering

Optimizing Model Training and Inference Workloads with GPUs, CUDA, and PyTorch

By: Chris Fregly

eText | 11 November 2025 | Edition Number 1

At a Glance

eText


$85.79

or 4 interest-free payments of $21.45 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Elevate your AI system performance capabilities with this definitive guide to maximizing efficiency across every layer of your AI infrastructure. In today's era of ever-growing generative models, AI Systems Performance Engineering provides engineers, researchers, and developers with a hands-on set of actionable optimization strategies. Learn to co-optimize hardware, software, and algorithms to build resilient, scalable, and cost-effective AI systems that excel in both training and inference. Authored by Chris Fregly, a performance-focused engineering and product leader, this resource transforms complex AI systems into streamlined, high-impact AI solutions.

Inside, you'll discover step-by-step methodologies for fine-tuning GPU CUDA kernels, PyTorch-based algorithms, and multinode training and inference systems. You'll also master the art of scaling GPU clusters for high performance, distributed model training jobs, and inference servers. The book ends with a 175+-item checklist of proven, ready-to-use optimizations.

  • Codesign and optimize hardware, software, and algorithms to achieve maximum throughput and cost savings
  • Implement cutting-edge inference strategies that reduce latency and boost throughput in real-world settings
  • Utilize industry-leading scalability tools and frameworks
  • Profile, diagnose, and eliminate performance bottlenecks across complex AI pipelines
  • Integrate full stack optimization techniques for robust, reliable AI system performance
on
Desktop
Tablet
Mobile

More in Systems Analysis & Design

Quantum Computing - Alex Wood

eBOOK

Think Distributed Systems - Dominik Tornow

eBOOK

A I(M) Here to Stay - Jonathon Wetzel

eBOOK