Get Free Shipping on orders over $79
Advances in Machine Learning/Deep Learning-based Technologies : Selected Papers in Honour of Professor Nikolaos G. Bourbakis - Vol. 2 - George A. Tsihrintzis

Advances in Machine Learning/Deep Learning-based Technologies

Selected Papers in Honour of Professor Nikolaos G. Bourbakis - Vol. 2

By: George A. Tsihrintzis (Editor), Maria Virvou (Editor), Lakhmi C. Jain (Editor)

eText | 5 August 2021

At a Glance

eText


$269.01

or 4 interest-free payments of $67.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

As the 4th Industrial Revolution is restructuring human societal organization into, so-called, "Society 5.0", the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society.

The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction*.*

This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 8th August 2022

More in Engineering in General

SAFE : Science and Technology in the Age of Ter - Martha Baer

eBOOK

The Shabby Chic Home - Rachel Ashwell

eBOOK

Shabby Chic - Rachel Ashwell

eBOOK

$17.99

Star Commercial Spaces - Julio Fajardo

eBOOK