Get Free Shipping on orders over $79
Advanced Data Analytics Using Python : With Architectural Patterns, Text and Image Classification, and Optimization Techniques - Sayan Mukhopadhyay

Advanced Data Analytics Using Python

With Architectural Patterns, Text and Image Classification, and Optimization Techniques

By: Sayan Mukhopadhyay, Pratip Samanta

eText | 25 November 2022 | Edition Number 2

At a Glance

eText


$74.99

or 4 interest-free payments of $18.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment.

Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning.

Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application.

What You'll Learn

  • Build intelligent systems for enterprise
  • Review time series analysis, classifications, regression, and clustering
  • Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning
  • Use cloud platforms like GCP and AWS in data analytics
  • Understand Covers design patterns in Python

Who This Book Is For

Data scientists and software developers interested in the field of data analytics.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

AI-Powered Search - Trey Grainger

eBOOK

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK