Get Free Shipping on orders over $79
A Course on Rough Paths : With an Introduction to Regularity Structures - Peter K. Friz

A Course on Rough Paths

With an Introduction to Regularity Structures

By: Peter K. Friz, Martin Hairer

eText | 26 August 2014

At a Glance

eText


$99.00

or 4 interest-free payments of $24.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Lyons' rough path analysis has provided new insights in the analysis of stochastic differential equations and stochastic partial differential equations, such as the KPZ equation. This textbook presents the first thorough and easily accessible introduction to rough path analysis. When applied to stochastic systems, rough path analysis provides a means to construct a pathwise solution theory which, in many respects, behaves much like the theory of deterministic differential equations and provides a clean break between analytical and probabilistic arguments. It provides a toolbox allowing to recover many classical results without using specific probabilistic properties such as predictability or the martingale property. The study of stochastic PDEs has recently led to a significant extension - the theory of regularity structures - and the last parts of this book are devoted to a gentle introduction. Most of this course is written as an essentially self-contained textbook, with an emphasis on ideas and short arguments, rather than pushing for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis courses and has some interest in stochastic analysis. For a large part of the text, little more than Ito integration against Brownian motion is required as background.
on
Desktop
Tablet
Mobile

More in Probability & Statistics

R for Non-Programmers - Daniel Dauber

eBOOK

untitled - TBC ANZ

eBOOK

$31.99

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK