+612 9045 4394
Statistical Estimation of Epidemiological Risk : Statistics in Practice - Kung-Jong Lui

Statistical Estimation of Epidemiological Risk

Statistics in Practice

Hardcover Published: 12th March 2004
ISBN: 9780470850718
Number Of Pages: 212

Share This Book:


RRP $397.99
or 4 easy payments of $68.84 with Learn more
Ships in 7 to 10 business days

Statistical estimation of indices for measuring risk is a key topic in epidemiology. A good estimator, that is unbiased and efficient, can help investigators search for the possible causes of disease. Good use of statistical methods can enable public health administrators to confidently allocate their limited resources to the appropriate methods of prevention and treatment. Statistical Estimation of Epidemiological Risk presents the most-commonly used measures of risk, and adopts a practical approach using many real and numerical examples to support the methodology. Presents a practical overview of the key measures of epidemiological risk. Features coverage of various sampling methods, and pointers to where each should be used. Each measure discussed is supported by a number of real and numerical examples that highlight their practical use. Each chapter is self-contained, allowing the book to be used as a reference source. Includes an abundance of exercises, which give the reader a clearer understanding of the theory. Suitable for epidemiologists and public health professionals with a modest statistical background. Statistical Estimation of Epidemiological Risk is both a useful pra

Industry Reviews

"?a concise, organized, and well-written text that provides the derivations of statistical formulas underlying much epidemiological research and practice." (Journal of the American Statistical Association, December 2005)

"...presents a considerable amount of recent research, much of which is the author's own..." (Royal Statistical Society, Vol.168, No.1, January 2005)

"...systematically organised...an excellent reference..." (Short Book Review, Vol.24, No.3 December 2004)

"...this book is strongly recommended..." (Statistical Methods in Medical Research, Vol 14 2005)

About the author.


1 Population Proportion or Prevalence.

1.1 Binomial sampling.

1.2 Cluster sampling.

1.3 Inverse sampling.



2 Risk Difference.

2.1 Independent binomial sampling.

2.2 A series of independent binomial sampling procedures.

2.2.1 Summary interval estimators.

2.2.2 Test for the homogeneity of risk difference.

2.3 Independent cluster sampling.

2.4 Paired-sample data.

2.5 Independent negative binomial sampling (inverse sampling).

2.6 Independent poisson sampling.

2.7 Stratified poisson sampling.



3 Relative Difference.

3.1 Independent binomial sampling.

3.2 A series of independent binomial sampling procedures.

3.2.1 Asymptotic interval estimators.

3.2.2 Test for the homogeneity of relative difference.

3.3 Independent cluster sampling.

3.4 Paired-sample data.

3.5 Independent inverse sampling.



4 Relative Risk.

4.1 Independent binomial sampling.

4.2 A series of independent binomial sampling procedures.

4.2.1 Asymptotic interval estimators.

4.2.2 Test for the homogeneity of risk ratio.

4.3 Independent cluster sampling.

4.4 Paired-sample data.

4.5 Independent inverse sampling.

4.5.1 Uniformly minimum variance unbiased estimator of relative risk.

4.5.2 Interval estimators of relative risk.

4.6 Independent poisson sampling.

4.7 Stratified poisson sampling.



5 Odds Ratio.

5.1 Independent binomial sampling.

5.1.1 Asymptotic interval estimators.

5.1.2 Exact confidence interval.

5.2 A series of independent binomial sampling procedures.

5.2.1 Asymptotic interval estimators.

5.2.2 Exact confidence interval.

5.2.3 Test for homogeneity of the odds ratio.

5.3 Independent cluster sampling.

5.4 One-to-one matched sampling.

5.5 Logistic modeling.

5.5.1 Estimation under multinomial or independent binomial sampling.

5.5.2 Estimation in the case of paired-sample data.

5.6 Independent inverse sampling.

5.7 Negative multinomial sampling for paired-sample data.



6 Generalized Odds Ratio.

6.1 Independent multinomial sampling.

6.2 Data with repeated measurements (or under cluster sampling).

6.3 Paired-sample data.

6.4 Mixed negative multinomial and multinomial sampling.



7 Attributable Risk.

7.1 Study designs with no confounders.

7.1.1 Cross-sectional sampling.

7.1.2 Case?control studies.

7.2 Study designs with confounders.

7.2.1 Cross-sectional sampling.

7.2.2 Case?control studies.

7.3 Case?control studies with matched pairs.

7.4 Multiple levels of exposure in case?control studies.

7.5 Logistic modeling in case?control studies.

7.5.1 Logistic model containing only the exposure variables of interest.

7.5.2 Logistic regression model containing both exposure and confounding variables.

7.6 Case?control studies under inverse sampling.



8 Number Needed to Treat.

8.1 Independent binomial sampling.

8.2 A series of independent binomial sampling procedures.

8.3 Independent cluster sampling.

8.4 Paired-sample data.



Appendix Maximum Likelihood Estimator and Large-Sample Theory.

A.1: The maximum likelihood estimator, Wald?s test, the score test, and the asymptotic likelihood ratio test.

A.2: The delta method and its applications.


Answers to Selected Exercises.


ISBN: 9780470850718
ISBN-10: 047085071X
Series: Statistics in Practice
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 212
Published: 12th March 2004
Publisher: John Wiley and Sons Ltd
Country of Publication: GB
Dimensions (cm): 23.72 x 16.05  x 1.7
Weight (kg): 0.45
Edition Number: 1