| Preface | p. v |
| List of Symbols | p. xiv |
| List of Tables | p. xxv |
| List of Figures | p. xxvii |
| The Type of a Self-Dual Code | p. 1 |
| Quadratic maps | p. 2 |
| Self-dual and isotropic codes | p. 4 |
| Twisted modules and their representations | p. 5 |
| Twisted rings and their representations | p. 6 |
| Triangular twisted rings | p. 9 |
| Quadratic pairs and their representations | p. 11 |
| Form rings and their representations | p. 13 |
| The Type of a code | p. 15 |
| Triangular form rings | p. 18 |
| Matrix rings of form rings and their representations | p. 19 |
| Automorphism groups of codes | p. 22 |
| Shadows | p. 24 |
| Weight Enumerators and Important Types | p. 29 |
| Weight enumerators of codes | p. 29 |
| MacWilliams identity and generalizations | p. 35 |
| The weight enumerator of the shadow | p. 39 |
| Catalogue of important types | p. 39 |
| Binary codes | p. 40 |
| 2 | p. 40 |
| 2I | p. 41 |
| 2II | p. 41 |
| 2S | p. 41 |
| Euclidean codes | p. 42 |
| 4E | p. 42 |
| q[superscript E] (even) | p. 43 |
| [Characters not reproducible] | p. 44 |
| 3 | p. 45 |
| q[superscript E] (odd) | p. 46 |
| [Characters not reproducible] (odd) | p. 46 |
| Hermitian codes | p. 47 |
| 4H | p. 47 |
| q[superscript H] | p. 47 |
| [Characters not reproducible] | p. 48 |
| Additive codes | p. 48 |
| 4H+ | p. 48 |
| 4H+ (even) | p. 49 |
| [Characters not reproducible] (even) | p. 49 |
| [Characters not reproducible] (even) | p. 50 |
| [Characters not reproducible] (even) | p. 50 |
| q[superscript H+] (odd) | p. 50 |
| [Characters not reproducible] (odd) | p. 51 |
| Codes over Galois rings Z/mZ | p. 51 |
| 4Z | p. 52 |
| m[superscript Z] | p. 53 |
| [Characters not reproducible] | p. 54 |
| [Characters not reproducible] | p. 54 |
| [Characters not reproducible] | p. 55 |
| [Characters not reproducible] | p. 55 |
| Codes over more general Galois rings | p. 55 |
| GR(p[superscript e], f)[superscript E] | p. 55 |
| GR(p[superscript e], f)[Characters not reproducible] | p. 56 |
| GR(p[superscript e], f)[Characters not reproducible] | p. 56 |
| GR(2e, f)[Characters not reproducible] | p. 57 |
| GR(2e, f)[Characters not reproducible] | p. 57 |
| GR(2e, f)[Characters not reproducible] | p. 58 |
| GR(p[superscript e], f)[superscript H] | p. 58 |
| GR(p[superscript e], f)[Characters not reproducible] | p. 58 |
| GR(p[superscript e], f)[superscript H+] | p. 59 |
| GR(p[superscript e], f)[Characters not reproducible] | p. 59 |
| Linear codes over p-adic integers | p. 60 |
| Z[subscript p] | p. 60 |
| More general p-adic integers | p. 60 |
| Examples of self-dual codes | p. 60 |
| 2: Binary codes | p. 60 |
| 2I: Singly-even binary self-dual codes | p. 61 |
| 2II: Doubly-even binary self-dual codes | p. 61 |
| 4E: Euclidean self-dual codes over F[subscript 4] | p. 64 |
| q[superscript E] (even or odd): Euclidean self-dual codes over F[subscript q] | p. 65 |
| [Characters not reproducible]: Generalized doubly-even self-dual codes | p. 65 |
| 3: Euclidean self-dual codes over F[subscript 3] | p. 67 |
| 4H: Hermitian self-dual codes over F[subscript 4] | p. 68 |
| q[superscript H]: Hermitian self-dual linear codes over F[subscript q] | p. 68 |
| 4H+: Trace-Hermitian additive codes over F[subscript 4] | p. 69 |
| 4Z: Self-dual codes over Z/4Z | p. 70 |
| Codes over other Galois rings | p. 76 |
| Z[subscript p]: Codes over the p-adic numbers | p. 77 |
| The Gleason-Pierce Theorem | p. 80 |
| Closed Codes | p. 83 |
| Bilinear forms and closed codes | p. 83 |
| Families of closed codes | p. 86 |
| Codes over commutative rings | p. 88 |
| Codes over quasi-Frobenius rings | p. 89 |
| Algebras over a commutative ring | p. 90 |
| Direct summands | p. 94 |
| Representations of twisted rings and closed codes | p. 94 |
| Morita theory | p. 96 |
| New representations from old | p. 98 |
| Subquotients and quotients | p. 98 |
| Direct sums and products | p. 99 |
| Tensor products | p. 100 |
| The Category Quad | p. 103 |
| The category of quadratic groups | p. 104 |
| The internal hom-functor IHom | p. 108 |
| Properties of quadratic rings | p. 113 |
| Morita theory for quadratic rings | p. 116 |
| Morita theory for form rings | p. 120 |
| Witt rings, groups and modules | p. 121 |
| The Main Theorems | p. 129 |
| Parabolic groups | p. 130 |
| Hyperbolic co-unitary groups | p. 131 |
| Generators for the hyperbolic co-unitary group | p. 136 |
| Clifford-Weil groups | p. 139 |
| Scalar elements in C([rho]) | p. 142 |
| Clifford-Weil groups and full weight enumerators | p. 149 |
| Results from invariant theory | p. 155 |
| Molien series | p. 155 |
| Relative invariants | p. 158 |
| Construction of invariants using differential operators | p. 160 |
| Invariants and designs | p. 161 |
| Symmetrizations | p. 162 |
| Example: Hermitian codes over F[subscript 9] | p. 167 |
| Real and Complex Clifford Groups | p. 171 |
| Background | p. 171 |
| Runge's theorems | p. 174 |
| The real Clifford group C[subscript m] | p. 177 |
| The complex Clifford group X[subscript m] | p. 182 |
| Barnes-Wall lattices | p. 184 |
| Maximal finiteness in real case | p. 188 |
| Maximal finiteness in complex case | p. 190 |
| Automorphism groups of weight enumerators | p. 190 |
| Classical Self-Dual Codes | p. 193 |
| Quasisimple form rings | p. 193 |
| Split type | p. 195 |
| q[superscript lin]: Linear codes over F[subscript q] | p. 196 |
| Clifford-Weil groups | p. 198 |
| F[subscript 2], Genus 1 | p. 198 |
| F[subscript 2], Genus 2 | p. 199 |
| Hermitian type | p. 201 |
| q[superscript H]: Hermitian self-dual codes over F[subscript q] | p. 202 |
| Clifford-Weil groups | p. 202 |
| The case q = 4 | p. 203 |
| The case q = 9 | p. 206 |
| Orthogonal (or Euclidean) type, p odd | p. 207 |
| q[superscript E] (odd): Euclidean self-dual codes over F[subscript q] | p. 207 |
| Clifford-Weil groups (q odd) | p. 207 |
| The case q = 3 | p. 209 |
| The case q = 3, genus 2 | p. 210 |
| The case q = 9 | p. 211 |
| The case q = 5 | p. 212 |
| Symplectic type, p odd | p. 213 |
| q[superscript H+] (odd): Hermitian F[subscript r]-linear codes over F[subscript q], q = r[superscript 2] | p. 214 |
| Clifford-Weil groups (genus g) | p. 214 |
| The case q = 9, genus 1 | p. 215 |
| Characteristic 2, orthogonal and symplectic types | p. 215 |
| q[superscript H+] (even): Hermitian F[subscript r]-linear codes over F[subscript q] q = r[superscript 2] | p. 217 |
| Clifford-Weil groups (genus g) | p. 217 |
| The case q = 4, genus 1 | p. 217 |
| The case q = 4, genus 2 | p. 219 |
| The case q = 16 | p. 220 |
| q[superscript E] (even): Euclidean self-dual F[subscript q]-linear codes | p. 220 |
| Clifford-Weil groups (genus g) | p. 220 |
| The case q = 2 | p. 221 |
| The case q = 4 | p. 221 |
| [Characters not reproducible] (even): Even Trace-Hermitian F[subscript r]-linear codes | p. 222 |
| Clifford-Weil groups (genus g) | p. 222 |
| The case q = 4, genus 1 | p. 223 |
| [Characters not reproducible] (even): Generalized Doubly-even codes over F[subscript q] | p. 224 |
| Clifford-Weil groups (genus g) | p. 224 |
| The case k = F[subscript 2], arbitrary genus | p. 225 |
| The case k - F[subscript 4], genus 1 | p. 225 |
| The case k = F[subscript 8] | p. 226 |
| Further Examples of Self-Dual Codes | p. 227 |
| m[superscript Z]: Codes over Z/mZ | p. 227 |
| 4Z: Self-dual codes over Z/4Z | p. 230 |
| 4Z: Type I self-dual codes over Z/4Z | p. 230 |
| [Characters not reproducible]: Type I self-dual codes over Z/4Z containing 1 | p. 231 |
| Same, with 1 in the shadow | p. 233 |
| [Characters not reproducible]: Type II self-dual codes over Z/4Z | p. 233 |
| [Characters not reproducible]: Type II self-dual codes over Z/4Z containing 1 | p. 234 |
| 8]: Self-dual codes over Z/8Z | p. 234 |
| Codes over more general Galois rings | p. 235 |
| GR(p[superscript e], f)[superscript E]: Euclidean self-dual GR(p[superscript e], f)-linear codes | p. 236 |
| GR(p[superscript e], f)[superscript H]: Hermitian self-dual GR(p[superscript e], f)-linear codes | p. 238 |
| GR(p[superscript e], 2l)[superscript H+]: Trace-Hermitian GR(p[superscript e], l)-linear codes | p. 239 |
| Clifford-Weil groups for GR(4, 2) | p. 239 |
| Self-dual codes over F[subscript q superscript 2] + F [subscript q superscript 2] u | p. 243 |
| Lattices | p. 249 |
| Lattices and theta series | p. 252 |
| Preliminary definitions | p. 252 |
| Modular lattices and Atkin-Lehner involutions | p. 255 |
| Shadows | p. 260 |
| Jacobi forms | p. 261 |
| Siegel theta series | p. 261 |
| Jacobi-Siegel theta series and Riemann theta functions | p. 265 |
| Riemann theta functions with Harmonic coefficients | p. 268 |
| Hilbert theta series | p. 269 |
| Positive definite form R-algebras | p. 272 |
| Half-spaces | p. 274 |
| Form orders and lattices | p. 276 |
| Even and odd unimodular lattices | p. 278 |
| Gluing theory for codes | p. 280 |
| Gluing theory for lattices | p. 282 |
| Maximal Isotropic Codes and Lattices | p. 285 |
| Maximal isotropic codes | p. 286 |
| Maximal isotropic doubly-even binary codes | p. 290 |
| Maximal isotropic even binary codes | p. 293 |
| Maximal isotropic ternary codes | p. 293 |
| Maximal isotropic additive codes over F[subscript 4] | p. 298 |
| Maximal isotropic codes over Z/4Z | p. 298 |
| Maximal even lattices | p. 301 |
| Maximal even lattices of determinant 3k | p. 304 |
| Maximal even and integral lattices of determinant 2k | p. 306 |
| Extremal and Optimal Codes | p. 313 |
| Upper bounds | p. 314 |
| Extremal weight enumerators and the LP bound | p. 314 |
| Self-dual binary codes, 2II and 2I | p. 317 |
| Some other types | p. 321 |
| A new definition of extremality | p. 324 |
| Asymptotic upper bounds | p. 326 |
| Lower bounds | p. 328 |
| Tables of extremal self-dual codes | p. 331 |
| Binary codes | p. 331 |
| Type 3: Ternary codes | p. 336 |
| Types 4E and [Characters not reproducible]: Euclidean self-dual codes over F[subscript 4] | p. 338 |
| Type 4H: Hermitian linear self-dual codes over F[subscript 4] | p. 339 |
| Types 4H+ and 4[Characters not reproducible]: Trace-Hermitian codes over F[subscript 4] | p. 340 |
| Type 4Z: Self-dual codes over Z/4Z | p. 342 |
| Other types | p. 345 |
| Enumeration of Self-Dual Codes | p. 347 |
| The mass formulae | p. 347 |
| Enumeration of binary self-dual codes | p. 350 |
| Interrelations between types 2I and 2II | p. 356 |
| Type 3: Ternary self-dual codes | p. 360 |
| Types 4E and [Characters not reproducible]: Euclidean self-dual codes over F[subscript 4] | p. 363 |
| Type 4H: Hermitian self-dual codes over F[subscript 4] | p. 363 |
| Type 4H+: Trace-Hermitian additive codes over F[subscript 4] | p. 365 |
| Type 4Z: Self-dual codes over Z/4Z | p. 366 |
| Other enumerations | p. 367 |
| Quantum Codes | p. 369 |
| Definitions | p. 370 |
| Additive and symplectic quantum codes | p. 373 |
| Hamming weight enumerators | p. 376 |
| Linear programming bounds | p. 381 |
| Other alphabets | p. 382 |
| A table of quantum codes | p. 385 |
| References | p. 391 |
| Index | p. 417 |
| Table of Contents provided by Ingram. All Rights Reserved. |