+612 9045 4394
Nonmeasurable Sets and Functions : Volume 195 - Alexander Kharazishvili

Nonmeasurable Sets and Functions

Volume 195

Hardcover Published: 1st September 1999
ISBN: 9780444516268
Number Of Pages: 349

Share This Book:


or 4 easy payments of $96.31 with Learn more
Ships in 7 to 10 business days

The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:
1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;
2. The theory of non-real-valued-measurable cardinals;
3. The theory of invariant (quasi-invariant)
extensions of invariant (quasi-invariant) measures.
These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.
- highlights the importance of nonmeasurable sets (functions) for general measure extension problem.
- Deep connections of the topic with set theory, real analysis, infinite combinatorics, group theory and geometry of Euclidean spaces shown and underlined.
- self-contained and accessible for a wide audience of potential readers.
- Each chapter ends with exercises which provide valuable additional information about nonmeasurable sets and functions.
- Numerous open problems and questions.

"The author has done a very good job writing a useful book on a theme which had not previously been described so thoroughly in the literature." Marek Balcerak (Lodz, Poland) in: Mathematical Reviews (2005d: 28001)

The Vitali theorem
The Bernstein construction
Nonmeasurable sets associated with Hamel bases
The Fubini theorem and nonmeasurable sets
Small nonmeasurable sets
Strange subsets of the Euclidean plane
Some special constructions of nonmeasurable sets
The Generalized Vitali construction
Selectors associated with countable subgroups
Selectors associated with uncountable subgroups
Absolutely nonmeasurable sets in groups
Ideals producing nonmeasurable unions of sets
Measurability properties of subgroups of a given group
Groups of rotations and nonmeasurable sets
Nonmeasurable sets associated with filters
Logical aspects of the existence of nonmeasurable sets
Some facts from the theory of commutative groups
Table of Contents provided by Publisher. All Rights Reserved.

ISBN: 9780444516268
ISBN-10: 0444516263
Series: North-Holland Mathematics Studies
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 349
Published: 1st September 1999
Publisher: Elsevier Science & Technology
Country of Publication: GB
Dimensions (cm): 24.0 x 16.5  x 1.91
Weight (kg): 0.77