Booktopia has been placed into Voluntary Administration. Orders have been temporarily suspended, whilst the process for the recapitalisation of Booktopia and/or sale of its business is completed, following which services may be re-established. All enquiries from creditors, including customers with outstanding gift cards and orders and placed prior to 3 July 2024, please visit
Add free shipping to your order with these great books
Methods of Graph Decompositions - Dr Vadim Zverovich

Methods of Graph Decompositions

By: Dr Vadim Zverovich, Dr Pavel Skums

Hardcover | 15 June 2024

Sorry, we are not able to source the book you are looking for right now.

We did a search for other books with a similar title, however there were no matches. You can try selecting from a similar category, click on the author's name, or use the search box above to find your book.

In general terms, a graph decomposition is a partition of a graph into parts satisfying some special conditions. Methods of Graph Decompositions discusses some state-of-the-art decomposition methods of graph theory, which are highly instrumental when dealing with a number of fundamental concepts such as unigraphs, isomorphism, reconstruction conjectures, k-dimensional graphs, degree sequences, line graphs and line hypergraphs. The first part of the book explores the algebraic theory of graph decomposition, whose major idea is to define a binary operation that turns the set of graphs or objects derived from graphs into an algebraic semigroup. If an operation and a class of graphs are appropriately chosen, then, just as for integers, each graph has a unique factorization (or canonical decomposition) into a product of prime factors. The unique factorization property makes this type of decomposition especially efficient for problems associated with graph isomorphism, and several such examples are described in the book. Another topic is devoted to Krausz-type decompositions, that is, special coverings of graphs by cliques that are directly associated with representation of graphs as line graphs of hypergraphs. The book discusses various algorithmic and structural results associated with the existence, properties and applications of such decompositions. In particular, it demonstrates how Krausz-type decompositions are directly related to topological dimension, information complexity and self-similarity of graphs, thus allowing to establish links between combinatorics, general topology, information theory and studies of complex systems. The above topics are united by the role played in their development by Professor Regina Tyshkevich, and the book is a tribute to her memory. The book will be ideal for researchers, engineers and specialists, who are interested in fundamental problems of graph theory and proof techniques to tackle them.