+612 9045 4394
 
CHECKOUT
Mechanics of Fracture Initiation and Propagation : Engineering Applications of Fracture Mechanics - George C. Sih

Mechanics of Fracture Initiation and Propagation

Engineering Applications of Fracture Mechanics

Hardcover

Published: April 1991
Ships: 7 to 10 business days
7 to 10 business days
RRP $692.99
$479.90
31%
OFF
or 4 easy payments of $119.98 with Learn more

Other Available Formats (Hide)

  • Paperback View Product Published: 24th September 2012
    $270.80

Explains how the mechanics of fracture initiation and propagation can be treated with consistency. Techniques are presented that enable materials to be used to their limits, resulting in structures that are lighter, tougher, and more tolerant of defects. Component size, geometry and loading are opti

1. A special theory of crack propagation.- 1.1 Historical remarks.- 1.2 The strain energy density concept.- 1.3 Fundamental hypotheses on crack initiation and direction.- 1.4 Prediction of crack growth direction.- 1.5 Intrinsic property of strain energy density factor.- 1.6 Mixed mode fracture criterion.- 1.7 Concluding remarks.- 1.8 References.- 2. A three-dimensional strain energy density factor theory of crack propagation.- 2.1 Preliminary remarks.- 2.2 Generalized stress field near crack border.- 2.3 Strain energy density factor.- 2.4 Basic assumptions of the theory.- 2.5 Minimum values of S.- 2.6 Application of the S-theory to the elliptical crack problem.- 2.7 Shape of fracture increment.- 2.8 Concluding remarks.- 2.9 Appendix 2.1: Elliptical crack in tension.- 2.10 Appendix 2.2: Combined Mode I and III loading.- 2.11 Appendix 2.3: Elliptical crack in compression.- 2.12 References.- 3. Straiu energy density theory applied to plate-bending and shell problems.- 3.1 Introductory remarks.- 3.2 Strain energy density factor theory.- 3.3 Bending and twisting of cracked plates.- 3.4 Direction of crack growth.- 3.5 Minimum strain energy density factors and allowable bending moments.- 3.6 Additional results on plates.- 3.7 Shell theory with shear deformation.- 3.8 Symmetric loading on shell.- 3.9 References.- 4. Dynamic crack problems - strain energy density fracture theory.- 4.1 Preliminary remarks.- 4.2 Strain energy density criterion in elastodynamics.- 4.3 Mixed mode impact.- 4.4 Standing plane waves impinging on a crack.- 4.5 Crack bifurcation.- 4.6 Summary and conclusions.- 4.7 References.- 5. Strain energy density and surface layer energy for blunt cracks or notches.- 5.1 Background information.- 5.2 Surface layer energy.- 5.3 Strain energy density theory.- 5.4 The embedded elliptical notch.- 5.5 Two external notches.- 5.6 Concluding remarks.- 5.7 References.- 6. Thermoelastic and hygrothermoelastic behavior of cracks.- 6.1 Introduction.- 6.2 Linear thermoelasticity.- 6.3 Fracture caused by nonuniform temperature changes.- 6.4 Simultaneous application of thermal and mechanical loading.- 6.5 Thermally induced slow crack growth.- 6.6 Hygrothermoelasticity.- 6.7 Effect of heat/moisture/load on crack behavior.- 6.8 Failure enhanced by temperature and moisture changes.- 6.9 References.- 7. Failure of composites as predicted by the strain energy density theory.- 7.1 Preliminary remarks.- 7.2 Srain energy density criterion.- 7.3 Failure of fiber, matrix or interface.- 7.4 Unidirectional fiber/matrix composite.- 7.5 Comparison of results obtained from anisotropic and matrix cracking model.- 7.6 Angle-ply laminates.- 7.7 Impact and cracking of unidirectional composites.- 7.8 Concluding remarks.- 7.9 Appendix 7.1: Calculation of gross mechanical properties of unidirectional composites.- 7.10 Appendix 7.2: E-glass-epoxy resin composites.- 7.11 Appendix 7.3: Stainless steel-aluminum composite.- 7.12 References.- 8. Experimental fracture mechanics: strain energy density criterion.- 8.1 Preliminary remarks.- 8.2 Mechanical properties of materials.- 8.3 Fracture mechanics discipline.- 8.4 Incremental crack growth.- 8.5 Fatigue crack growth: a path-dependent process.- 8.6 Concluding remarks.- 8.7 References.- 9. Isoenergy density theory: exchange of surface and volume energy.- 9.1 Introduction.- 9.2 Surface energy: micro- and macrocrack models.- 9.3 Volume energy: local and global instability.- 9.4 Damage resistance concept: scaling in size and time.- 9.5 Interaction between surface and volume energy: nonhomogeneous energy dissipation.- 9.6 References.- Author index.

ISBN: 9780792308775
ISBN-10: 0792308778
Series: Engineering Applications of Fracture Mechanics
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 410
Published: April 1991
Publisher: Springer
Country of Publication: NL
Dimensions (cm): 23.5 x 15.5  x 3.18
Weight (kg): 1.73