+612 9045 4394
 
CHECKOUT
Kalman Filtering and Neural Networks : Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, - Simon Haykin

Kalman Filtering and Neural Networks

Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning,

Hardcover Published: 8th October 2001
ISBN: 9780471369981
Number Of Pages: 284

Share This Book:

Hardcover

RRP $471.99
$326.35
31%
OFF
or 4 easy payments of $81.59 with Learn more
Ships in 10 to 15 business days

<b>State-of-the-art coverage of Kalman filter methods for the design of neural networks</b> <p> This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. <p> The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: <ul> <li>An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) <li>Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes <li>The dual estimation problem <li>Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm <li>The unscented Kalman filter </ul> <p> Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems. <p> An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.

"Although the traditional approach to the subject is usually linear, this book recognizes and deals with the fact that real problems are most often nonlinear." (SciTech Book News, Vol. 25, No. 4, December 2001)

Preface.

Contributors.

Kalman Filters (S. Haykin).

Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp).

Learning Shape and Motion from Image Sequences (G. Patel, et al.).

Chaotic Dynamics (G. Patel and S. Haykin).

Dual Extended Kalman Filter Methods (E. Wan and A. Nelson).

Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani).

The Unscencted Kalman Filter (E. Wan and R. van der Merwe).

Index.

ISBN: 9780471369981
ISBN-10: 0471369985
Series: Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning,
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 284
Published: 8th October 2001
Country of Publication: US
Dimensions (cm): 24.55 x 16.15  x 1.93
Weight (kg): 0.54
Edition Number: 1