+612 9045 4394
 
CHECKOUT
Isotopes in the Earth Sciences - H. G. Attendorn

Isotopes in the Earth Sciences

Hardcover

Published: 31st July 1988
Ships: 7 to 10 business days
7 to 10 business days
RRP $1385.99
$959.75
31%
OFF
or 4 easy payments of $239.94 with Learn more

'The most incomprehensible thing about the world is that it is comprehensible.' ALBERT EINSTEIN, 1950 The tremendous progress of recent years in the field of isotopes in the earth sciences has proved invaluable in attempting to solve a varied spectrum of geological and geochemical problems. The lunar exploration programmes provided rocks for analysis, stimulating refinements in mass spectrometry which were later used for terrestrial samples too. Among significant advances was the development of electrostatic tandem accelerator mass spectrometers allowing the precise measure- ment of abundances of cosmic radionuclides. Also, new geochronometers were devised, for instance those dependent upon the radioactive decay of samarium-I47 to neodymium-I43, lutetium-176 to hafnium-176, rhenium-I87 to osmium-I87 and potassium-40 to calcium40, these supplementing prior dating methods. Their impact as regards the origin of igneous rocks was considerable. Isotopic compositions of neodymium, strontium, lead and hafnium in these rocks showed that magmas from the mantle are often crustally contaminated. In addition, isotopic compositions of carbon, oxygen and sulphur aided the elucidation of aspects of petrogenesis. These and many other facets of the subject are discussed in this book.

I: Introductory Chapters.- 1. Introduction.- 1.1. The Big Bang: Forces, Particles and Isotopes.- 1.2. Supernovae, the Solar System and Isotopes.- 1.2.1. The Allende meteorite.- 1.2.2. Excess oxygen-16.- 1.2.3. Other anomalies.- 1.3. Elementary Particles.- 1.4. Elements.- 1.5. Radioactivity.- 1.6. Fractionation.- 1.7. Palaeothermometry.- 1.8. Unstable Atomic Nuclei.- 1.9. Beta Particles.- 1.10. Positron Decay.- 1.11. Electron Capture.- 1.12. Branched Decay.- 1.13. Alpha Decay.- 1.14. Nuclear Fission.- 1.15. Radioactive Decay.- 1.16. Decay Series.- 1.17. Radioactivity Units.- 1.18. Neutron Activation.- 1.19. Isotopic Translocation.- 2. Mass Spectrometry.- 2.1. Background.- 2.2. The Mass Spectrometer.- 2.3. Sample Preparation for Gas Isotope Mass Spectrometers.- 2.4. The Inlet System.- 2.5. The Ion Source.- 2.6. The Mass Analyser.- 2.7. Ionic Motions.- 2.8. Collector Systems and Ion Current Measurements.- 2.9. System Configuration Delta.- 2.10. Automatic Thermal Ionization Isotope Mass Spectrometer.- 2.11. Accelerator-Based Mass Spectrometry.- 2.12. Laser Mass Spectrometry.- 2.13. Ion Microprobes.- 2.14. Isotope Dilution.- II: Dating Methods.- 3. Uranium, Thorium, Lead Dating.- 3.1. Background.- 3.2. Geochemistry.- 3.3. Decay Series.- 3.4. Lead.- 3.5. U-Pb Concordia Diagrams.- 3.6. Concordia Models.- 3.7. U-Pb, Th-Pb, Pb-Pb Isochrons.- 3.8. Common-Lead Dating.- 3.9. Anomalous Leads.- 3.10. Multistage Leads.- 3.11. Whole-Rock Dating.- 3.12. Lead in Feldspars.- 3.13. Recent Advances.- 4. Rubidium-Strontium Dating.- 4.1. Background.- 4.2. Geochemistry.- 4.3. Dating Methodology.- 4.4. Isochrons.- 4.5. Mixtures.- 4.6. Fictitious Isochrons.- 4.7. Strontium Through Geological Time.- 4.7.1. Chondrites and achondrites.- 4.7.2. The Moon.- 4.7.3. The isotope evolution of terrestrial strontium.- 4.7.4. The origin of granites.- 4.8. Strontium in Sedimentary Deposits.- 5. Potassium-Argon and Argon-40/Argon-39 Dating.- 5.1. Background.- 5.2. Theory and Assumptions in Potassium-Argon Dating.- 5.3. Thermal Loss of Argon During Metamorphism.- 5.4. Isochrons.- 5.5. Sedimentary Rocks.- 5.6. Mantle-Derived Argon.- 5.7. Geomagnetic Polarity Reversals.- 5.8. The Metamorphic Veil of R L. Armstrong.- 5.9. Precambrian Time Scale.- 5.10. Argon-40/Argon-39 Dating.- 5.11. Theory.- 5.12. Incremental Heating.- 5.13. Correlation of Argon Isotopes.- 5.14. Caveats.- 5.15. Developments.- 6. Carbon-14 Dating.- 6.1. Background.- 6.2. Discovery.- 6.3. Carbon-14 Dating.- 6.4. Isotope Fractionation.- 6.5. Analytical Methods.- 6.6. Carbonate Samples.- 7. Tritium Dating.- 7.1. Background.- 7.2. Tritium Dating.- 8. Other Dating Methods.- 8.1. Samarium-Neodymium Dating.- 8.1.1. Geochemistry.- 8.1.2. Assessment of ages.- 8.1.3. Neodymium through geological time.- 8.1.4. Recent advances.- 8.2. Rhenium-Osmium Dating.- 8.2.1. Geochemistry.- 8.2.2. Assessment of ages.- 8.2.3. Osmium through geological time.- 8.2.4. Common-osmium dating.- 8.2.5. The C-T iridium anomaly.- 8.3. Potassium-Calcium Dating.- 8.3.1. Calcium isotopes fractionation.- 8.3.2. Potassium-calcium dating approach.- 8.4. Calcium Diffusion Dating.- 8.4.1. Theory.- 8.4.2. Calculation of D'.- 8.5. Lutetium-Hafnium Dating.- 8.5.1. Geochemistry.- 8.5.2. Assessment of ages.- 8.5.3. Hafnium through geological time.- 8.6. Uranium Series Disequilibrium Dating.- 8.6.1. Ionium dating of deep sea sediments.- 8.6.2. The uranium-234-uranium-238 geochronometer.- 8.6.3. Thorium-230-uranium-238, thorium-230-uranium-234 dating.- 8.6.4. Ionium-protactinium dating.- 8.6.5. Lead-210 dating.- 8.7. Radiation-Damage Methods.- 8.7.1. Electron spin resonance.- 8.7.2. Thermoluminescence.- 8.7.3. Pleochroic haloes.- 8.7.4. Fission track dating.- III: Environmental Isotopes.- 9. Environmental Isotopes in the Atmosphere and Hydrosphere.- 9.1. Background.- 9.2. Stable Isotopes of Oxygen and Hydrogen in the Hydrosphere.- 9.3. Stratigraphy of Ice and Snow.- 9.4. Sea Water Isotopic Composition.- 9.5. Oceanic Palaeothermometry.- 9.6. Variation of ?18O in Sea Water.- 9.6.1. Biogenic silica.- 9.6.2. Biogenic phosphate.- 9.7. Geothermal Waters.- 9.8. Cosmogenic Radionuclides in the Hydrologic Cycle.- 9.9. Sediment Dating with Cosmogenic Radionuclides.- 9.9.1. Manganese nodules.- 9.9.2. Beryllium-10 in volcanics.- 9.10. Dating Ice Sheets and Groundwaters.- 9.10.1. Beryllium-10 and aluminium-26.- 9.10.2. Chlorine-36.- 9.10.3. Silicon-32.- 9.10.4. Argon-39.- 9.10.5. Krypton-81 and krypton-85.- 9.11. Exposure Ages of Terrestrial Rocks and Meteorites.- 9.12. Nitrogen.- 9.13. Sulphur.- 9.14. Strontium.- 9.14.1. Fresh-water carbonates.- 9.14.2. Oceans.- 9.15. Neodymium.- 9.16. Artificial Isotope Hydrology.- 10. Isotopes in the Biosphere.- 10.1. A Basis for Terrestrial Life.- 10.2. Biospheric Carbon.- 10.3. Total Dissolved Inorganic Carbon (TDC) in Natural Fresh Waters.- 10.4. ?13Cof Marine Planktonic and Particulate Organic Carbon.- 10.5. Kerogen and Proto-Kerogen ?13C in Marine Sediments.- 10.6. ?13C of Ocean Total Dissolved Carbon.- 10.7. Organic Material Degradation in Anoxic Porewaters.- 10.8. Carbonate Minerals and Carbon-Rich Sediments.- 10.9. Fossil Fuels.- 10.9.1. Coal and lead.- 10.9.2. Coal and sulphur.- 11. Isotopes in the Lithosphere.- 11.1. Oxygen in Rocks.- 11.2. Stony Meteorites and Lunar Rocks.- 11.3. Hydrothermal Ore Deposits.- 11.4. Volcanic Rocks and Batholiths.- 11.5. Oxygen and Hydrogen Isotope Compositions in Sedimentary Rocks.- 11.6. Oxygen in Metamorphosed Rocks.- 11.7. Nitrogen in Igneous Rocks.- 11.8. Sulphur in Igneous Rocks.- 11.9. Sulphide Ores.- 11.10. Native Sulphur.- 11.11. Precambrian Sedimentary Rocks.- 11.12. Carbon: Carbonatites, Diamonds.- 11.13. Carbon: Marble, Graphite, Calcite-Graphite Isotope Geothermometer.- 11.13.1. Calcite-graphite isotope geothermometer.- 12. Isotopes in Palaeoclimatology.- 12.1. Background.- 12.2. Oxygen Isotope Composition in the Past.- 12.3. Cretaceous Extinctions.- 12.4. Campanian-to-Palaeocene Palaeotemperature and Carbon Isotope Sequence.- 12.4.1. Surface temperatures.- 12.4.2. Bottom temperatures.- 12.4.3. Surface carbon isotopic values.- 12.4.4. Surface-to-bottom carbon isotope differences.- 12.5. Oxygen Isotopes in Neogene Molluscan Fossils and Quaternary Foraminifera.- 12.6. Comparison of Isotopes and Plankton in a Late Quaternary Core.- 12.7. Stratigraphical Uncertainty Arising from Bioturbation.- 12.8. Further Foraminiferal Work.- 12.9. Ostracods.- 12.10. Some Carbon-13/Carbon-12 Data.- 12.10.1. Changes in the oceanic carbon- 13/carbon-12 ratio during the last 140 000 years.- 12.10.2. The carbon-13/carbon-12 ratio now.- 12.11. ?13C and Animal Diets.- 13. Radioactive Waste.- 13.1. Background.- 13.2. Nuclear Power.- 13.3. Chernobyl, USSR.- 13.4. Sizewell, England.- 13.5. Probability of Nuclear Reactor Accidents.- 13.6. Nuclear Waste Disposal.- 13.7. Selection of Nuclear Waste Sites.- 13.8. Appropriate Geological Environments for Deep Underground Repositories for Nuclear Wastes in the UK.- 13.8.1. Inland basins.- 13.8.2. Seawardly dipping and off-shore sediments.- 13.8.3. Lower permeability basement under a sedimentary cover.- 13.8.4. Hard rocks in low-relief terrane.- 13.8.5. Small islands.- 13.9. Fast-Breeder Reactors.- 13.10. The Problem of 94239Pu.- 13.11. A Matter of Balance.- Appendixes.- 1. The Exchange of Oxygen Isotopes in Carbon Dioxide-Phosphoric Acid Systems.- 2. Concentration and Purification of Zircon.- 3. A Palaeotemperature Equation for Planktonic Foraminifera.- Author Index.

ISBN: 9780412537103
ISBN-10: 0412537109
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 648
Published: 31st July 1988
Publisher: Chapman and Hall
Country of Publication: GB
Dimensions (cm): 29.7 x 21.0  x 3.6
Weight (kg): 2.44
Edition Type: New edition