+612 9045 4394
 
CHECKOUT
Handbook of Thin Films, Five-Volume Set - Hari Singh Nalwa

Handbook of Thin Films, Five-Volume Set

Hardcover

Published: 15th October 2001
RRP $4879.95
$3608.25
26%
OFF
This title is not in stock at the Booktopia Warehouse and needs to be ordered from our supplier.
Click here to read more about delivery expectations.

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.
Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.
Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.

About the Editorp. xix
List of Contributorsp. xxi
Volume Listingp. xxiii
Methods of Deposition of Hydrogenated Amorphous Silicon for Device Applications
Introductionp. 2
Research and Industrial Equipmentp. 8
Physics and Chemistry of PECVDp. 14
Plasma Modelingp. 21
Plasma Analysisp. 39
Relation between Plasma Parameters and Material Propertiesp. 53
Deposition Modelsp. 63
Modifications of PECVDp. 67
Hot Wire Chemical Vapor Depositionp. 76
Expanding Thermal Plasma Chemical Vapor Depositionp. 79
Applicationsp. 82
Conclusionp. 91
Acknowledgmentsp. 92
Referencesp. 92
Atomic Layer Deposition
Introductionp. 103
Alternative Namesp. 104
Basic Features of ALDp. 104
ALD Reactorsp. 108
ALD Precursorsp. 113
Film Materials and Applicationsp. 125
Characterization of ALD Processesp. 138
Summaryp. 152
Referencesp. 153
Laser Applications in Transparent Conducting Oxide Thin Films Processing
Introductionp. 162
General Electrical Properties of TCO Filmsp. 163
Excimer Lasersp. 164
PLD Deposition Techniquep. 167
Properties of PLD Indium Oxide Filmsp. 175
Properties of PLD ITO Filmsp. 177
Laser Irradiationp. 193
Other TCO Materials--Zinc Oxide (ZnO) Thin Filmsp. 208
Applications of PLD ITO Filmsp. 212
Conclusionp. 213
Referencesp. 213
Cold Plasma Processes in Surface Science and Technology
Introductionp. 219
Applicationsp. 226
Outlookp. 257
Acknowledgmentsp. 257
Referencesp. 257
Electrochemical Formation of Thin Films of Binary III-V Compounds
Introductionp. 262
Group III-V Compoundsp. 263
Electrodepositionp. 266
Codeposition: Basic Considerationsp. 266
Codeposition from Aqueous Solutionsp. 271
Codeposition from Molten Saltsp. 275
Sequential Electrodepositionp. 276
Electrodeposition of Group III-V Compoundsp. 277
Diffusion Process and Formation of Group III-V Compoundsp. 304
Influence of the Substrate Structure and Morphology on the Diffusion Processp. 310
Conclusionsp. 313
Acknowledgmentsp. 315
Referencesp. 315
Fundamentals for the Formation and Structure Control of Thin Films: Nucleation, Growth, Solid-State Transformations
Introductionp. 319
Theory of Nucleation and Growthp. 321
Measurement of Nucleation and Growthp. 338
Control of Nucleation and Growthp. 352
Acknowledgmentsp. 369
Referencesp. 370
Ion Implant Doping and Isolation of GaN and Related Materials
Introductionp. 375
Range Statisticsp. 375
Donor Implants (Si, O, S, Se, and Te)p. 376
Acceptor Implantsp. 380
Damage Removalp. 381
High Temperature Annealingp. 385
Diffusivity of Implanted Speciesp. 393
p-n Junction Formationp. 396
Isolationp. 397
Devicesp. 405
Acknowledgmentp. 406
Referencesp. 406
Plasma Etching of GaN and Related Materials
Introductionp. 409
Plasma Reactorsp. 410
Plasma Chemistriesp. 413
Etch Profile And Etched Surface Morphologyp. 424
Plasma-Induced Damagep. 425
Device Processingp. 441
Acknowledgmentsp. 450
Referencesp. 450
Residual Stresses in Physically Vapor-Deposited Thin Films
Introductionp. 455
Microstructure and Morphology of PVD Thin Filmsp. 457
Magnitude of Residual Stresses in PVD Thin Filmsp. 470
Origin of Residual Stresses in PVD Thin Filmsp. 482
Effect of Major Process Parameters on the Intrinsic Stressp. 492
Data on Residual Stresses in PVD Thin Filmsp. 497
Summary and Conclusionp. 519
Referencesp. 520
Langmuir-Blodgett Films of Biological Molecules
Introductionp. 523
Principles of the Langmuir-Blodgett Techniquep. 524
Techniques for Studying Monolayers and LB Filmsp. 528
Protein Filmsp. 533
Conclusionsp. 544
Acknowledgmentp. 545
Referencesp. 545
Structure Formation During Electrocrystallization of Metal Films
Introductionp. 559
Classification of the Structural Defects in Electrodepositsp. 560
Mechanism of Formation of Structural Defects during Noncoherent Nucleationp. 563
Classical Theory of Noncoherent Nucleationp. 566
Atomistic Analysis of Noncoherent Nucleationp. 570
Factors Influencing the Structure of Electrodeposits (Theoretical and Experimental Results)p. 574
Mechanism of Multitwinningp. 582
Conclusionsp. 584
Acknowledgmentp. 585
Referencesp. 585
Epitaxial Thin Films of Intermetallic Compounds
Introductionp. 587
MBE Growth of Intermetallic Compoundsp. 588
Selected Applications in Basic and Applied Researchp. 608
Outlookp. 623
Acknowledgmentsp. 623
Referencesp. 624
Pulsed Laser Deposition of Thin Films: Expectations and Reality
Introductionp. 627
Composition of Pulsed Laser-Deposited Filmsp. 629
Structure of PLD Filmsp. 651
Polymorphism in PLD Filmsp. 659
Macrodefects in PLD Filmsp. 661
Influence of Target Properties on Some Features of PLD Compound Filmsp. 666
General Conclusionsp. 670
Acknowledgmentsp. 671
Referencesp. 671
Single-Crystal [beta]''-Alumina Films
Introductionp. 675
Review of the Literature on Large-Area Thin Films of [beta]''/[beta]-Al[subscript 2]O[subscript 3]p. 677
Na-[beta]''-Al[subscript 2]O[subscript 3] Single-Crystal Film Growthp. 677
Single-Crystal Film Characterizationp. 681
Na-[beta]''-Al[subscript 2]O[subscript 3]-Coated, [alpha]-Al[subscript 2]O[subscript 3] Single-Crystal Plateletsp. 687
The Growth of K-[beta]'-Al[subscript 2]O[subscript 3] Single-Crystal Filmsp. 688
Ion Exchange Preparation of Other [beta]''-Al[subscript 2]O[subscript 3] Isomorphs in Single-Crystal Film Formp. 689
Luminescence Investigation of Cu[superscript +]-Doped, Single-Crystal [beta]''-Al[subscript 2]O[subscript 3] Filmsp. 691
Summaryp. 694
Appendixp. 694
Acknowledgmentp. 697
Referencesp. 697
Indexp. 699
About the Editorp. xxi
List of Contributorsp. xxiii
Volume Listingp. xxvii
Classification of Cluster Morphologies
Structures Developing during Film Growthp. 1
Structures Developing after Completed Depositionp. 40
Referencesp. 55
Band Structure and Orientation of Molecular Adsorbates on Surfaces by Angle-Resolved Electron Spectroscopies
Introductionp. 62
Crystallinity and the Reciprocal Latticep. 62
Experimental Measurements of Electronic Band Structurep. 62
Symmetry and Selection Rulesp. 64
Band Dispersionp. 67
Carbon Monoxide Monolayersp. 69
Molecular Nitrogenp. 71
Nitrosyl Bondingp. 74
Molecular Oxygenp. 75
Di-Halogen Adsorptionp. 77
Ammoniap. 78
Waterp. 79
NO[subscript 2], SO[subscript 2], CO[subscript 2]p. 79
Formatep. 80
Methanol (Methoxy), Methanethiol (Thiolate), and Related Speciesp. 80
Ethylene and Acetylenep. 82
Cyanogen and CNp. 84
Benzene, Pyridine, and Small Aromaticsp. 84
Carboranesp. 87
Metallocenesp. 89
Phthalocyanines and Porphyrinsp. 90
Large Aromatic Hydrocarbons and Organic Speciesp. 92
Organic Polymers and "One" Dimensional Conductorsp. 97
Band Structure of Buckyball Films on Metals and Semiconductorsp. 103
Conclusionp. 105
Acknowledgmentsp. 106
Referencesp. 106
Superhard Coatings in C-B-N Systems: Growth and Characterization
Introductionp. 115
Diamondp. 116
Cubic Boron Nitridep. 147
Carbon Nitride Thin Filmsp. 159
Acknowledgmentsp. 181
Referencesp. 181
Atr Spectroscopy of Thin Films
Introductionp. 191
Fundamental Theoryp. 192
Orientation Measurementsp. 205
Special Experimental Techniquesp. 211
Applicationsp. 216
Conclusionsp. 226
Weak-Absorption Approximationp. 227
Referencesp. 227
Ion-Beam Characterization in Superlattices
Introductionp. 231
Rutherford Backscattering Spectrometry (RBS)p. 232
Ion-Beam Channeling Techniquep. 241
Application of Ion-Beam Techniques to Superlattice (I)p. 257
Application of Ion-Beam Techniques to Superlattice (II)p. 266
Referencesp. 274
In Situ and Real-Time Spectroscopic Ellipsometry Studies: Carbon Based and Metallic TiN[subscript x] Thin Films Growth
Introductionp. 277
Theoretical Background of Ellipsometry for Study of the Properties of Materialsp. 279
Macroscopic Dielectric Function, Effective-Medium Theory, and Microscopic Surface Roughnessp. 283
Ellipsometric Techniques and Extension of Ellipsometry from the IR to the Deep UV Rangep. 285
Ellipsometric Studies of Carbon-Based Thin Filmsp. 290
Optical Characterization and Real-Time Monitoring of the Growth of Metallic TiN[subscript x] Filmsp. 312
Summary and Conclusionsp. 326
Acknowledgmentsp. 328
Referencesp. 328
In Situ Faraday-Modulated Fast-Nulling Single-Wavelength Ellipsometry of the Growth of Semiconductor, Dielectric, and Metal Thin Films
Introduction to Ellipsometryp. 332
Experimental Techniquesp. 341
Experimental Resultsp. 346
Conclusionsp. 365
Method of Summationp. 366
Method of Resultant Wavesp. 367
Relation between Ellipsometric Parameters [Delta] and [psi] and the Null Ellipsometer Variables P and Ap. 370
Referencesp. 372
Photocurrent Spectroscopy of Thin Passive Films
Introductionp. 373
Metal-Electrolyte and Semiconductor-Electrolyte Interfacesp. 376
The Passive-Film-Electrolyte Interfacep. 381
Quantitative Use of PCS for the Characterization of Passive Films on Metals and Alloysp. 399
Acknowledgmentsp. 411
Referencesp. 411
Electron Energy Loss Spectroscopy for Surface Study
Introductionp. 415
General Scattering Theoryp. 416
Many-Body Electron Scattering Theoryp. 425
Optical Potentialsp. 432
Theory of Deep Core Excitation EELSp. 441
Thermal Effects on EELFSp. 456
Concluding Remarksp. 475
Acknowledgmentsp. 475
Referencesp. 475
Theory of Low-Energy Electron Diffraction and Photoelectron Spectroscopy From Ultra-Thin Films
Introductionp. 479
Thin Films and Quantized Electronic Statesp. 480
Low-Energy Electron Diffractionp. 487
Photoelectron Spectroscopyp. 505
Acknowledgmentsp. 524
Referencesp. 524
In Situ Synchrotron Structural Studies of the Growth of Oxides and Metals
Introductionp. 527
Experimental Techniquesp. 529
Preparation and Structure of Clean Surfacesp. 538
Model Metal/Oxide Systemsp. 553
Exchange-Coupled Systemsp. 572
Growth of Nickel Oxidep. 585
Conclusionsp. 592
Acknowledgmentsp. 592
Referencesp. 593
Operator Formalism in Polarization-Nonlinear Optics and Spectroscopy of Polarization-Inhomogeneous Media
Fundamentals of the Theory of Ineraction of Vector Light Fields with Nonlinear Mediap. 598
Tensor-Operator Approach to the Description of Photoanisotropic Mediap. 599
Fedorov's Light Beam Tensor Formalism for Description of Vector Field Polarizationp. 602
Propagation of Polarized Radiation in an Anisotropic Medium: Evolution of Probe Wave Intensityp. 605
Saturation Spectroscopyp. 606
Nonlinear Polarization Spectroscopyp. 606
Spectroscopy of Optical Mixingp. 612
Principle of Nonlinear Spectroscopic Ellipsometryp. 616
Numerical Evaluation of an Effective Nonlinear Susceptibility in the Framework of NSEp. 619
The Concept of Normal Waves in Photoanisotropic Mediap. 619
Method of Combination Waves in NSEp. 624
Nonlinear Optical Ellipsometerp. 628
Nonlinear Light-Induced Anisotropy of an Isotropic Medium with Partially Polarized Lightp. 629
Methods for Measuring Nonlinear Susceptibilityp. 633
Acknowledgmentsp. 634
Referencesp. 634
Secondary Ion Mass Spectrometry and its Application to Thin Film Characterization
Introductionp. 638
Fundamentals of the SIMS Techniquep. 639
Fractionation Effectsp. 643
Instrumentationp. 644
Factors Characterizing a SIMS Instrumentp. 648
Quantificationp. 650
Depth Profilingp. 655
Ion Imaging with SIMSp. 664
Applications to Thin Film Characterizationp. 664
Referencesp. 680
A Solid-State Approach to Langmuir Monolayers, Their Phases, Phase Transitions, and Design
Introductionp. 686
Molecular Model Buildingp. 691
Thermodynamicsp. 695
Ferroelasticity of Langmuir Monolayersp. 700
Free Energy and Order Parametersp. 711
Application of the General Theoryp. 715
Extensions of the Solid-State Theory of Langmuir Film Phasesp. 720
Computer Simulationsp. 722
Closing Remarks on the Solid-State Model for Langmuir Filmsp. 728
Appendixp. 730
Acknowledgmentsp. 731
Referencesp. 731
Solid State NMR of Biomolecules
Introductionp. 735
Fundamentals of Solid State NMR Spectroscopyp. 735
Solid State NMR Techniquesp. 739
Application of Solid State NMR to Biomoleculesp. 749
Concluding Remarksp. 759
Referencesp. 759
Indexp. 763
About the Editorp. xix
List of Contributorsp. xxi
Volume Listingp. xxiii
The Electrical Properties of High-Dielectric-Constant and Ferroelectric Thin Films for Very Large Scale Integration Circuits
Introductionp. 2
High-Dielectric-Constant Films: Tantalum Oxide (Ta[subscript 2]O[subscript 5])p. 7
High-Dielectric-Constant Films: Silicon Nitride (Si[subscript 3]N[subscript 4])p. 34
High-Dielectric-Constant Films: Titanium Oxide (TiO[subscript 2])p. 40
Other High-Dielectric-Constant Films: Al[subscript 2]O[subscript 3], Y[subscript 2]O[subscript 3], HfO[subscript 2], ZrO[subscript 2], and Gd[subscript 2]O[subscript 3]p. 50
Ferroelectric Films: Lead Zirconate Titanate (PZT)p. 57
Paraelectric Films: Barium Strontium Titanate (BST)p. 71
Ferroelectric Films: Strontium Bismuth Tantalate (SBT)p. 78
Other Ferroelectric and Paraelectric Filmsp. 82
Metal-Ferroelectric-Insulator-Semiconductor Structuresp. 87
Conclusionp. 91
Acknowledgmentsp. 91
Referencesp. 91
High-Permittivity (Ba, Sr)TiO[subscript 3] Thin Films
Introductionp. 100
Thin Film Depositionp. 105
Physical and Electrical Properties of BST Thin Filmsp. 111
Conduction Mechanismsp. 123
Dielectric Relaxation and Defect Analysis of BST Thin Filmsp. 129
Reliabilityp. 136
Key Technologies for Gigabit DRAMsp. 140
Optical Propertiesp. 143
Other Possible Applicationsp. 151
Summaryp. 159
Referencesp. 160
Ultrathin Gate Dielectric Films for Si-Based Microelectronic Devices
Introductionp. 169
Requirements of Ultrathin Gate Dielectric Filmsp. 172
Ultrathin Gate Dielectric Film Processingp. 172
Characterization of Ultrathin Gate Dielectric Filmsp. 176
Hydrogen and Ultrathin Gate Dielectric Filmsp. 189
Silicon Oxide Gate Dielectric Filmsp. 192
Silicon Oxynitride Gate Dielectric Filmsp. 205
Alternative (High-k) Gate Dielectric Filmsp. 216
Final Remarksp. 224
Acknowledgmentsp. 225
Referencesp. 225
Piezoelectric Thin Films: Processing and Properties
Introductionp. 231
Piezoelectricity in Thin Films: Size Effectsp. 234
Growth Techniquesp. 238
Characterization Methodsp. 256
Properties of Piezoelectric Thin Filmsp. 266
Conclusionsp. 304
Acknowledgmentsp. 304
Referencesp. 304
Fabrication and Characterization of Ferroelectric Oxide Thin Films
Introductionp. 309
Overview of Basic Physical Properties of Ferroelectric Oxidesp. 310
Deposition of Ferroelectric Oxide Thin Filmsp. 317
Characterization of Ferroelectric Thin Filmsp. 344
Summary and Concluding Remarksp. 359
Referencesp. 360
Ferroelectric Thin Films of Modified Lead Titanate
Introductionp. 369
Chemical Solution Deposition of Modified Lead Titanate Thin Filmsp. 371
Ferroelectric Characterization Techniquesp. 386
Conclusions and Trendsp. 394
Acknowledgmentsp. 395
Referencesp. 395
Point Defects in Thin Insulating Films of Lithium Fluoride for Optical Microsystems
Prefacep. 400
Lithium Fluoride: Material Propertiesp. 400
Color Centers in Lithium Fluoride Crystalsp. 400
Laser Active Color Centers in Lithium Fluoride Crystalsp. 401
Lithium Fluoride Filmsp. 403
Color Center Formation by Low-Penetrating Particlesp. 403
Coloration of LiF by Low-Energy Electron Beamsp. 403
Kinetics of Low-Energy Electron-Induced Color Center Formationp. 404
Refractive Index Modification Induced by Color Centers in LiFp. 406
What about "Thin Films"?p. 407
Growth of Lithium Fluoride Filmsp. 407
Optical Absorption of Colored LiF Filmsp. 412
Photoluminescence of Colored LiF Filmsp. 413
Influence of LiF Film Structure on Color Center Formationp. 415
Nonlinear Optical Properties of Colored LiF Filmsp. 416
Design of Active Waveguides in LiFp. 418
Electron-Beam Lithography for Pattern Realizationp. 418
CCs in Alkali Halide Films for Passive Optical Functionsp. 420
CCs in Alkali Halide Films for Active Optical Functionsp. 420
Optical Microscopy on LiF-Based Microstructuresp. 426
Photoluminescence for Optical Microsystem Developmentsp. 428
Conclusionsp. 429
Acknowledgmentsp. 429
Referencesp. 430
Polarization Switching of Ferroelectric Crystals
Introductionp. 433
Processing of Single Domain Crystalsp. 437
Periodical Polarization Switching on Ferroelectrics with High Coercive Fieldp. 449
Conclusionp. 473
Referencesp. 475
High-Temperature Superconductor and Ferroelectric Thin Films for Microwave Applications
Introductionp. 481
High-Temperature Superconducting Materialsp. 482
Introduction to Ferroelectric Materialsp. 500
Summary and Concluding Remarksp. 513
Referencesp. 514
Twinning in Ferroelectric Thin Films: Theory and Structural Analysis
Introductionp. 517
Theoryp. 521
Experimental Methodsp. 529
Correlation Between Experiment and Theoryp. 532
Summary and Concluding Remarksp. 540
Acknowledgmentsp. 541
Appendixp. 541
Referencesp. 542
Ferroelectric Polymer Langmuir-Blodgett Films
Introductionp. 546
Langmuir-Blodgett Film Fabricationp. 555
Film Structure and Morphologyp. 560
Ferroelectric Propertiesp. 565
Applications of Ferroelectric Langmuir-Blodgett Filmsp. 586
Conclusionsp. 588
Acknowledgmentsp. 588
Referencesp. 588
Optical Properties of Dielectric and Semiconductor Thin Films
Theoryp. 593
Applications of Thin Filmsp. 610
Conclusionsp. 620
Acknowledgmentp. 621
Referencesp. 622
Indexp. 623
About the Editorp. xix
List of Contributorsp. xxi
Volume Listingp. xxiii
Electrochemical Passivation of Si and SiGe Surfaces
Introductionp. 2
In Situ Characterization of Surface Bond Configurations and Electronic Surface Statesp. 3
Electrochemically Hydrogenated Si Surfacesp. 12
Hydrogenated Porous Siliconp. 22
Thin Anodic Oxides on Sip. 31
Thick Anodic Oxides on Sip. 41
Enhanced Passivation of SiGe by Anodic Oxidationp. 46
Acknowledgmentsp. 52
Referencesp. 52
Epitaxial Growth and Structure of III-V Nitride Thin Films
Introductionp. 57
Growth Methodsp. 59
Epitaxial Growthp. 67
Doping of III-Nitridesp. 87
Structure and Microstructure of Epitaxial GaNp. 90
Ternary Alloysp. 100
Referencesp. 111
Optical Properties of Highly Excited (Al, In) GaN Epilayers and Heterostructures
Introductionp. 118
General Optical Properties of the Group III-Nitridesp. 121
Pump-Probe Spectroscopy of Highly Excited Group III-Nitridesp. 125
Gain Mechanisms in Nitride Lasing Structuresp. 137
Optical Properties of InGan-Based Heterostructuresp. 147
Optical Properties of Nitride Thin Films at High Temperaturesp. 166
Microstructure Lasingp. 172
Imaging Techniques for Wide-Bandgap Semiconductorsp. 178
Summaryp. 182
Acknowledgmentsp. 183
Referencesp. 183
Electrical Conduction Properties of Thin Films of Cadmium Compounds
Introductionp. 187
Structurep. 189
Electrical Propertiesp. 202
Summary and Conclusionsp. 242
Acknowledgmentsp. 243
Referencesp. 244
Carbon-Containing Heteroepitaxial Silicon and Silicon/Germanium Thin Films on Si(001)
Introductionp. 247
Growth of Epitaxial Si[subscript 1-y]C[subscript y] and Si[subscript 1-x-y]Ge[subscript x]C[subscript y]p. 248
Mechanical and Structural Propertiesp. 256
Electrical Properties of C-Containing Alloys on Si(001)p. 268
Highly Concentrated Pseudomorphic Si[subscript 1-y]C[subscript y] Layersp. 277
Device Application of SiGe:Cp. 280
Summary and Outlookp. 288
Acknowledgmentsp. 288
Referencesp. 288
Low-Frequency Noise Spectroscopy for Characterization of Poly Crystalline Semiconductor Thin Films and Polysilicon Thin Film Transistors
Introductionp. 291
Noise of Polycrystalline Semiconductor Thin Filmsp. 294
Noise of the Drain Current in Polysilicon TFTsp. 298
Noise of the Leakage Current in Polysilicon TFTsp. 313
Avalanche-Induced Excess Noise in Polysilicon TFTsp. 318
Hot-Carrier Phenomena in Polysilicon TFTsp. 320
Concluding Remarksp. 323
Referencesp. 324
Germanium Thin Films on Silicon for Detection of Near-Infrared Light
Introductionp. 327
SiGe Technologyp. 330
SiGe on Si NIR Photodetectors: Historical Overviewp. 346
Functional Devicesp. 356
Numerical Simulation of Relaxed Ge/Si Heterojunctionsp. 361
Referencesp. 365
Physical Properties of Amorphous Gallium Arsenide
Introductionp. 369
Deposition and Growth Parametersp. 370
Composition, Structural, and Morphological Propertiesp. 375
Density of Statesp. 379
Optical Propertiesp. 385
Phonon Spectrap. 388
Electrical Transport Propertiesp. 391
Applications, DEvicesp. 398
List of Symbolsp. 399
Referencesp. 400
Amorphous Carbon Thin Films
Introductionp. 404
Deposition and Growthp. 409
Microstructurep. 420
Optical Propertiesp. 432
Defect Studies of Amorphous Carbonp. 455
Electrical Properties of Amorphous Carbonp. 467
Concepts of Localization and Delocalization in a-Cp. 482
Electron Field Emissionp. 484
Amorphous Carbon-Based Devicesp. 498
Conclusionp. 501
Referencesp. 501
High-T[subscript c] Superconductor Thin Films
Introductionp. 507
Fabrication of High-T[subscript c] Superconductor Thin Filmsp. 509
High-Temperature Superconductor Thin Filmsp. 522
Transport Properties in High-T[subscript c] Superconductor Thin Filmsp. 576
Device Applicationsp. 594
Heterostructuresp. 605
Conclusionp. 613
Acknowledgmentsp. 614
Referencesp. 614
Electronic and Optical Properties of Strained Semiconductor Films of Groups IV and III-V Materials
Introductionp. 625
Deformation Potentialsp. 627
The Tight-Binding Modelp. 629
Strained Sip. 630
Strained Gep. 632
Strained Si[subscript 1-x]Ge[subscript x] Alloysp. 635
Strained Si[subscript 1-y]C[subscript y] Alloysp. 637
Si/Ge Superlatticesp. 638
Strained GaAs and InPp. 641
InAs/AlSb Superlatticesp. 642
Summaryp. 645
Referencesp. 646
Growth, Structure, and Properties of Plasma-Deposited Amorphous Hydrogenated Carbon-Nitrogen Films
Introductionp. 649
Amorphous Hydrogenated Carbon Filmsp. 650
Nitrogen Incorporation Into a-C:H Filmsp. 654
Characterization of a-C(N):H Film Structurep. 663
Mechanical Propertiesp. 670
Optical and Electrical Propertiesp. 672
Referencesp. 675
Conductive Metal Oxide Thin Films
Transparent Conducting Oxidesp. 677
Ruthenium Oxidep. 682
Iridium Oxidep. 686
Strontium Ruthenatep. 688
Strontium-Doped Lanthanum Cobaltitep. 692
Concluding Remarksp. 695
Referencesp. 696
Indexp. 699
About the Editorp. xix
List of Contributorsp. xxi
Volume Listingp. xxiii
Nanoimprint Techniques
Introductionp. 2
Hot-Embossing Lithographyp. 5
Mold-Assisted Lithographyp. 32
Microcontact Printingp. 36
Masters, Stamps, and Moldsp. 40
Sticking Challengep. 45
Applicationsp. 53
Perspectivesp. 57
Acknowledgmentsp. 57
Referencesp. 57
The Energy Gap of Clusters, Nanoparticles, and Quantum Dots
Introductionp. 62
Experimental Techniquesp. 63
Theoryp. 66
Metalsp. 68
Semiconductorsp. 72
Unpassivated Silicon Particlesp. 76
Passivated Silicon Particlesp. 80
Nanowires of Siliconp. 81
Carbon Particlesp. 83
Thin Films of Particlesp. 86
Applicationsp. 87
Referencesp. 90
Electronic States in GaAs-AlAs Short-Period Superlattices: Energy Levels and Symmetry
Introductionp. 99
Symmetry of Short-Period Superlatticesp. 100
Photoluminescence and Photoluminescence Excitation Spectra of Short-Period Superlatticesp. 103
Time Decay and Temperature Dependence of Photoluminescence and Photoluminescence Excitation Spectrap. 107
Photoluminescence Spectrum under Hydrostatic Pressurep. 111
Short-Period Superlattices in Externally Applied Fieldsp. 116
Ultra-Short-Period Superlatticesp. 121
Other Experimental Methods and Other Oriented Short-Period Superlatticesp. 127
Theoretical Researchp. 130
Application of Short-Period Superlatticesp. 133
Summaryp. 138
Acknowledgmentp. 138
Referencesp. 138
Spin Waves in Thin Films, Superlattices and Multilayers
General Introductionp. 141
Spin Waves in Thin Filmsp. 143
Spin Waves in Superlattices and Multilayersp. 150
Discussionp. 161
Concluding Remarksp. 164
Acknowledgmentsp. 165
Referencesp. 165
Quantum Well Interference in Double Quantum Wells
Introductionp. 170
Single Quantum Wellsp. 171
Mechanisms for Exchange Couplingp. 174
Symmetric Double Quantum Wells: Bound Statesp. 177
Symmetric Double Quantum Wells: Resonant Scattering Statesp. 178
Asymmetric Double Quantum Well Cu/Co/Ni/Co(100)p. 186
Asymmetric Double Quantum Wells Cu/Ni/Cu/Co(100) and Cu/Co/Cu/Co(100)p. 193
Discussionp. 197
Concluding Remarksp. 200
Acknowledgmentsp. 200
Appendix Ap. 200
Appendix Bp. 200
Appendix Cp. 200
Appendix Dp. 201
Appendix Ep. 201
Appendix Fp. 201
Appendix Gp. 202
Appendix Hp. 202
Referencesp. 203
Electro-Optical and Transport Properties of Quasi-Two-Dimensional Nanostructured Materials
Introductionp. 208
Methods of Synthesis and Fabrication of Quasi-Two-Dimensional Nanostructured Materialsp. 209
Electronic States of the Idealized Quasi-Two-Dimensional Nanostructured Materialsp. 213
Quasi-Particle States in the Quasi-Two-Dimensional Structuresp. 223
Effect of Static External Electric and Magnetic Fields on the Quasi-Particle Energy Levels in the Q2D Systemsp. 237
Dynamics of the Lattice in Q2D Systems: Phonons and Electron-Phonon Interactionsp. 245
Theory of Quantum Transport in Q2D Systemsp. 260
Optical Properties of Q2D Nanostructured Materialsp. 287
Electron Raman Scattering in Q2D Systemsp. 308
Physical Effects of Impurity States and Atomic Systems Confined in Q2D Nanostructured Materialsp. 327
Referencesp. 331
Magnetism of Nanophase Composite Films
Introduction and Scopep. 337
Nanocomposite Thin Filmsp. 338
Cluster-Assembled Thin Filmsp. 354
Exchange-Coupled Nanocomposite Hard Magnetic Filmsp. 364
Concluding Remarksp. 371
Acknowledgmentsp. 372
Referencesp. 372
Thin Magnetic Films
Magnetism Overviewp. 375
Magnetism of Thin Filmsp. 388
Magnetic Film Characterizationp. 407
Magnetic Thin Film Processingp. 416
Applications of Magnetic Thin Filmsp. 422
Acknowledgmentsp. 433
Referencesp. 433
Magnetotransport Effects in Semiconductors
Notationp. 440
Introductionp. 441
Influence of Magnetic Field on Equilibrium Carrier Density in Semiconductorsp. 441
Hall and Galvanomagnetic Effectsp. 461
Magnetoresistancep. 464
Quantum Effects in Large Magnetic Fieldsp. 468
Magnetotransport in Low-Dimensional Systems and in Heterostructuresp. 474
Experimental Techniquesp. 484
Referencesp. 491
Thin Films for High-Density Magnetic Recording
Instruments for Magnetic Measurementp. 495
Basic Principles of Magnetic Recordingp. 499
Thin Film Recording Mediap. 502
Thin Films for Replay Headsp. 514
Films for Write Headsp. 538
Acknowledgmentp. 550
Referencesp. 550
Nuclear Resonance in Magnetic Thin Films and Multil Ayers
Introductionp. 555
Principles of Nuclear Resonance Spectroscopyp. 556
Hyperfine Interactions and Nuclear Resonance Spectra in Thin Solid Filmsp. 560
Experimental Techniques for Thin Film Characterizationp. 568
Nuclear Resonance Study of Metallic Multilayersp. 571
Nuclear Resonance Spectroscopy in Amorphous, Nanostructured, and Granular Filmsp. 578
Concluding Remarksp. 585
Acknowledgmentsp. 585
Referencesp. 586
Magnetic Characterization of Superconducting Thin Films
Introductionp. 590
Local and Integral Magnetization Measurementsp. 590
Theoretical Description of the Ideal Flux Patternsp. 594
Flux Patterns Around Defects and Special Magneto-Optic Experimentsp. 602
Magnetization Measurementsp. 612
Conclusionsp. 615
Acknowledgmentsp. 615
Referencesp. 615
Indexp. 621
Table of Contents provided by Syndetics. All Rights Reserved.

ISBN: 9780125129084
ISBN-10: 0125129084
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 3451
Published: 15th October 2001
Publisher: Elsevier Science Publishing Co Inc
Country of Publication: US
Dimensions (cm): 27.9 x 21.6  x 20.96
Weight (kg): 9.91