+612 9045 4394
Fuzzy Multiple Attribute Decision Making : Methods and Applications : Lecture Notes in Economic and Mathematical Systems - Shu-Jen Chen

Fuzzy Multiple Attribute Decision Making : Methods and Applications

Lecture Notes in Economic and Mathematical Systems

Paperback ISBN: 9783540549987
Number Of Pages: 536

Share This Book:


or 4 easy payments of $53.24 with Learn more
Ships in 5 to 9 business days

This monograph is intended for graduate courses in engineering and management science, as well as readers who want an introduction to the theories and methologies of Multiple Attribute Decision Making (MADM) in a fuzzy environment. Classical MADM introduces a great deal of complexity to the decision analysis. In a fuzzy environment, the decision analysis is extended to consider not only the aggregation of performance scores (which are fuzzy) but also the comparison of fuzzy numbers which cannot be easily compared as in the case of real numbers. Chapter 2 gives an overview of classical MADM. Chapter 3 presents the basic concepts and the mathematical operations of fuzzy set theory with figures and simple numerical examples in an easy-to-read and easy-to-follow manner. Chapter 4 deals with fuzzy ranking methods, which are widely used in many fuzzy applications (especially fuzzy optimization procedure). A systematic classification of nearly two dozen existing ranking methods is presented, and a system for classifying over one dozen fuzzy MADM methods is presented. The concept, algorithm and the characteristics of each method are discussed, and the computational procedure of each method is illustrated by solving a simple numerical example.

I. Introduction.- II. Multiple Attribute Decision Making - An Overview.- 2.1 Basics and Concepts.- 2.2 Classifications of MADM Methods.- 2.2.1 Classification by Information.- 2.2.2 Classification by Solution Aimed At.- 2.2.3 Classification by Data Type.- 2.3 Description of MADM Methods.- Method (1): DOMINANCE.- Method (2): MAXIMIN.- Method (3): MAXIMAX.- Method (4): CONJUNCTIVE METHOD.- Method (5): DISJUNCTIVE METHOD.- Method (6): LEXICOGRAPHIC METHOD.- Method (7): LEXICOGRAPHIC SEMIORDER METHOD.- Method (8): ELIMINATION BY ASPECTS (EBA).- Method (9): LINEAR ASSIGNMENT METHOD (LAM).- Method (10): SIMPLE ADDITIVE WEIGHTING METHOD (SAW).- Method (11): ELECTRE (Elimination et Choice Translating Reality).- Method (12): TOPSIS (Technique for Order Preference by Similarity to Ideal Solution).- Method (13): WEIGHTED PRODUCT METHOD.- Method (14): DISTANCE FROM TARGET METHOD.- III. Fuzzy Sets and their Operations.- 3.1 Introduction.- 3.2 Basics of Fuzzy Sets.- 3.2.1 Definition of a Fuzzy Set.- 3.2.2 Basic Concepts of Fuzzy Sets.- Complement of a Fuzzy Set.- Support of a Fuzzy Set.- ?-cut of a Fuzzy Set.- Convexity of a Fuzzy Set.- Normality of a Fuzzy Set.- Cardinality of a Fuzzy Set.- The mth Power of a Fuzzy Set.- 3.3 Set-Theoretic Operations with Fuzzy Sets.- 3.3.1 No Compensation Operators.- The Min Operator.- 3.3.2 Compensation-Min Operators.- Algebraic Product.- Bounded Product.- Hamacher's Min Operator.- Yager's Min Operator.- Dubois and Prade's Min Operator.- 3.3.3 Full Compensation Operators.- The Max Operator.- 3.3.4 Compensation-Max Operators.- Algebraic Sum.- Bounded Sum.- Hamacher's Max Operator.- Yager's Max Operator.- Dubois and Prade's Max Operator.- 3.3.5 General Compensation Operators.- Zimmermann and Zysno's ? Operator.- 3.3.6 Selecting Appropriate Operators.- 3.4 The Extension Principle and Fuzzy Arithmetics.- 3.4.1 The Extension Principle.- 3.4.2 Fuzzy Arithmetics.- Fuzzy Number.- Addition of Fuzzy Numbers.- Subtraction of Fuzzy Numbers.- Multiplication of Fuzzy Numbers.- Division of Fuzzy Numbers.- Fuzzy Max and Fuzzy Min.- 3.4.3 Special Fuzzy Numbers.- L-R Fuzzy Number.- Triangular (or Trapezoidal) Fuzzy Number.- Proof of Formulas.- The Image of Fuzzy Number N.- The Inverse of Fuzzy Number N.- Addition and Subtraction.- Multiplication and Division.- 3.5 Conclusions.- IV. Fuzzy Ranking Methods.- 4.1 Introduction.- 4.2 Ranking Using Degree of Optimality.- 4.2.1 Baas and Kwakernaak's Approach.- 4.2.2 Watson et al.'s Approach.- 4.2.3 Baldwin and Guild's Approach.- 4.3 Ranking Using Hamming Distance.- 4.3.1 Yager's Approach.- 4.3.2 Kerre's Approach.- 4.3.3 Nakamura's Approach.- 4.3.4 Kolodziejczyk's Approach.- 4.4 Ranking Using ?-Cuts.- 4.4.1 Adamo's Approach.- 4.4.2 Buckley and Chanas' Approach.- 4.4.3 Mabuchi's Approach.- 4.5 Ranking Using Comparison Function.- 4.5.1 Dubois and Prade's Approach.- 4.5.2 Tsukamoto et al.'s Approach.- 4.5.3 Delgado et al.'s Approach.- 4.6 Ranking Using Fuzzy Mean and Spread.- 4.6.1 Lee and Li's Approach.- 4.7 Ranking Using Proportion to The Ideal.- 4.7.1 McCahone's Approach.- 4.8 Ranking Using Left and Right Scores.- 4.8.1 Jain's Approach.- 4.8.2 Chen's Approach.- 4.8.3 Chen and Hwang's Approach.- 4.9 Ranking with Centroid Index.- 4.9.1 Yager's Centroid Index.- 4.9.2 Murakami et al.'s Approach.- 4.10 Ranking Using Area Measurement.- 4.10.1 Yager's Approach.- 4.11 Linguistic Ranking Methods.- 4.11.1 Efstathiou and Tong's Approach.- 4.11.2 Tong and Bonissone's Approach.- V. Fuzzy Multiple Attribute Decision Making Methods.- 5.1 Introduction.- 5.2 Fuzzy Simple Additive Weighting Methods.- 5.2.1 Baas and Kwakernaak's Approach.- 5.2.2 Kwakernaak's Approach.- 5.2.3 Dubois and Prade's Approach.- 5.2.4 Cheng and McInnis's Approach.- 5.2.5 Bonissone's Approach.- 5.3 Analytic Hierarchical Process (AHP) Methods.- 5.3.1 Saaty's AHP Approach.- 5.3.2 Laarhoven and Pedrycz's Approach.- 5.3.3 Buckley's Approach.- 5.4 Fuzzy Conjunctive/Disjunctive Method.- 5.4.1 Dubois, Prade, and Testemale's Approach.- 5.5 Heuristic MAUF Approach.- 5.6 Negi's Approach.- 5.7 Fuzzy Outranking Methods.- 5.7.1 Roy's Approach.- 5.7.2 Siskos et al.'s Approach.- 5.7.3 Brans et al.'s Approach.- 5.7.4 Takeda's Approach.- 5.8 Maximin Methods.- 5.8.1 Gellman and Zadeh's Approach.- 5.8.2 Yager's Approach.- 5.9 A New Approach to Fuzzy MADM Problems.- 5.9.1 Converting Linguistic Terms to Fuzzy Numbers.- 5.9.2 Converting Fuzzy Numbers to Crisp Scores.- 5.9.3 The Algorithm.- VI. Concluding Remarks.- 6.1 MADM Problems and Fuzzy Sets.- 6.2 On Existing MADM Solution Methods.- 6.2.1 Classical Methods for MADM Problems.- 6.2.2 Fuzzy Methods for MADM Problems.- Fuzzy Ranking Methods.- Fuzzy MADM Methods.- 6.3 Critiques of the Existing Fuzzy Methods.- 6.3.1 Size of Problem.- 6.3.2 Fuzzy vs. Crisp Data.- 6.4 A New Approach to Fuzzy MADM Problem Solving.- 6.4.1 Semantic Modeling of Linguistic Terms.- 6.4.2 Fuzzy Scoring System.- 6.4.3 The Solution.- 6.4.4 The Advantages of the New Approach.- 6.5 Other Multiple Criteria Decision Making Methods.- 6.5.1 Multiple Objective Decision Making Methods.- 6.5.2 Methods of Group Decision Making under Multiple Criteria.- Social Choice Theory.- Experts Judgement/Group Participation.- Game Theory.- 6.6 On Future Studies.- 6.6.1 Semantics of Linguistic Terms.- 6.6.2 Fuzzy Ranking Methods.- 6.6.3 Fuzzy MADM Methods.- 6.6.4 MADM Expert Decision Support Systems.- VII. Bibliography.

ISBN: 9783540549987
ISBN-10: 3540549986
Series: Lecture Notes in Economic and Mathematical Systems
Audience: General
Format: Paperback
Language: English
Number Of Pages: 536
Country of Publication: DE
Dimensions (cm): 24.41 x 16.99  x 2.87
Weight (kg): 0.88