+612 9045 4394
 
CHECKOUT
Fault Diagnosis and Fault Tolerance : A Systematic Approach to Special Topics - Tinghuai Chen

Fault Diagnosis and Fault Tolerance : A Systematic Approach to Special Topics

Paperback

Ships: 5 to 9 business days
5 to 9 business days
$204.16
or 4 easy payments of $51.04 with Learn more

With the rapid growth of scale of integration of VLSI chips and the need forreliable computers, fault diagnosis and fault tolerance have become important topics in chip design and manufacture. This book is intended to lead new researchers in the field to the frontier of some branches of the fault-tolerant computing field. The book presents the results of a research group working at Chongqing University, China, for the last twelveyears. It contains seven chapters that can be read independently of each other. Chapter 1 gives a mathematical introduction to four-valued logic and its applications to test generation, hazard identification, and transition logic. Chapter 2 summarizes work on the fault-diagnosis problem at the system level, with society diagnosis and an analog circuit as examples. Chapter 3 discusses the definition of a testability measure, introduces the synthesis problem for testability, and studies automatic design for testability at gate level and module level. Chapter 4 introduces the new NMRC (N-modular redundancy with comparing) technique and studies some optimal designs. Chapter 5 studies the fault-tolerance of interconnection switching networks and shows how networks can be designed to increase the tolerated number of faulty elements. Chapter 6 shows how fault-tolerance problems for multibus systems correspond to connectivity problems for hypergraphs and how optimal connectivity is achieved with BIB (balanced incomplete block) designs. Chapter 7 discusses TMR (triple modular redundancy) systems.

1 Four-Valued Logic and Its Applications.- 1.1 Introduction.- 1.2 Mathematical Basis.- 1.2.1 Four-Valued Boolean Algebra B4.- 1.2.2 Boolean Expression.- 1.2.3 Mapping B4n?B4 and Boolean Functions.- 1.2.4 Vector Forms.- 1.2.5 Canonical Forms.- 1.2.6 Expressions for Boolean Functions.- 1.3 STAR Expansions, Boolean Difference and Boolean Differential.- 1.3.1 Expansion Formulae.- 1.3.2 Boolean Difference.- 1.3.3 Boolean Differential.- 1.3.4 Geometrical Interpretation.- 1.4 Combined Components.- 1.4.1 Front and Rear Values.- 1.4.2 Binary Coding.- 1.4.3 Interpretation for Testing.- 1.5 Boolean Equations.- 1.5.1 Basic Concepts.- 1.5.2 A1*A2***An*j=0 with j=1,D,$$overline D$$; and A1=x1 or $${{overline x }_{1}}$$.- 1.5.3 Deriving Star Expansion Via Solving Equation.- 1.6 Test Generation for Combinational Circuits.- 1.6.1 Fault and (Static) Test.- 1.6.2 The Test for Single Fault.- 1.7 Statical Test Generation for Sequential Circuits.- 1.7.1 Example to Derive Tests.- 1.7.2 Comparison with Other Method.- 1.8 Identification of Hazards and Dynamic Testing.- 1.8.1 The Dynamic Behavior and Dynamic Tests of Combinational Circuit.- 1.8.2 Identification of Hazards.- 1.8.3 Dynamic Tests and Hazardous Tests.- 1.9 Transition Logic.- 1.9.1 Proposition Calculus and Predicate Calculus.- 1.9.2 Logical Inferences.- 1.9.3 Other Logic.- 1.10 Comparison with Other Logics.- 1.10.1 Addition of States.- 1.10.2 Extension to Power Set.- 1.10.3 Merging of States.- 1.10.4 Extension by Direct Product.- References.- 2 Computer System Diagnosis and Society Diagnosis.- 2.1 Introduction (PMC Model).- 2.1.1 Self-Diagnosis of System.- 2.1.2 Basic Definitions.- 2.2 One Step System Diagnosis for PMC Model.- 2.2.1 The Characterization Problem.- 2.2.2 Diagnosing Algorithm.- 2.2.3 Optimal Design.- 2.3 The Extension of System Diagnosis.- 2.3.1 Extension along Diagnostic Goals.- 2.3.2 Extension along Models.- 2.3.3 Extension along the State Values.- 2.3.4 Extension along Diagnosing Method.- 2.3.5 The Combination of Different Extensions.- 2.4 The Application of System Diagnosis.- 2.4.1 The Diagnosis for Analog Circuits.- 2.4.2 Fault-Tolerant Computing.- 2.4.3 Society Diagnosis.- References.- 3 Testability Design via Testability Measures.- 3.1 Introduction.- 3.1.1 The Problem of Testability and Its Measure.- 3.1.2 Definition of Testability and Measures.- 3.1.3 Testability in Term of Controllability and Observability.- 3.1.4 Testability Measure and Algorithm.- 3.1.5 J. Hayes' Suggestion.- 3.1.6 Problems Studied in this Chapter.- 3.2 Testability Design.- 3.2.1 Testability Measure.- 3.2.2 Means to Improve Testability.- 3.2.3 Constraints A,B,C,D,E and Objective Function F.- 3.2.4 ILP Problem for Testability.- 3.2.5 Asynchronous Sequential Circuits.- 3.2.6 Experimental Results.- 3.3 Design for Testability at Module Level.- 3.3.1 Definition of Testability.- 3.3.2 Probability Function Ill.- 3.3.3 Controllability Spectrum.- 3.3.4 Observability Spectrum.- 3.3.5 Modifications and Other Problems.- 3.4 Applications.- References.- 4 NMRC: A Technique for Redundancy.- 4.1 Introduction.- 4.2 NMRC System Model.- 4.2.1 System Description.- 4.2.2 Fault Pattern.- 4.2.3 Maximum Likelihood Selection.- 4.3 Analysis of Fault Tolerance Capability.- 4.3.1 Definitions.- 4.3.2 Module-FT Degree.- 4.3.3 Module-Comparator FT Degree.- 4.4 Optimal NMRC System Design.- 4.5 An Example for Comparison Analysis.- 4.5.1 Performance Comparison.- 4.5.2 Cost Comparison.- 4.5.3 Reliability Comparison.- 4.5.4 Diagnosability Comparison.- 4.6 Conclusion.- References.- 4.A.1 The Proof of Theorem 4.4.- 4.A.2 The Proof of Lemma 2.- 5 Fault Tolerance of Switching Interconnection ss-Networks.- 5.1 Introduction.- 5.1.1 Multicomputer Systems.- 5.1.2 Connecting Capability and Structure of ICN.- 5.1.3 ss-elements and ss-network.- 5.1.4 Communication Delay.- 5.1.5 Fault Model for a ss-element.- 5.2 General Inequalities.- 5.2.1 Proof of [log2n]+l ? d ? n.- 5.2.2 Proof of K ? d -1.- 5.3 ISE-MISE-RMISE.- 5.3.1 ISE.- 5.3.2 MISE.- 5.3.3 RMISE.- 5.4 C 1n,t ss-networks.- 5.4.1 Definition of C 1n,t Networks.- 5.4.2 Expressions for K and d.- 5.4.3 Relative Optimization.- 5.4.4 Maximize d.- 5.4.5 Maximize K.- 5.5 RFT Network.- 5.5.1 Swi tching Elements.- 5.5.2 RFT Networks.- 5.5.3 Routing Algorithm and Fault-Tolerance.- 5.6 Conclusion.- References.- 6 The Connectivity of Hypergraph and the Design of Fault Tolerant Multibus Systems.- 6.1 Introduction.- 6.2 Connectivity of Hypergraph.- 6.2.1 Definitions.- 6.2.2 Basic Theorems.- 6.2 3 Properties of Hypergraph with the Best Connectivity.- 6.3 BIB Design and the Optimized Multibus System.- 6.3.1 BIB Design.- 6.3.2 Theorems.- 6.3.3 Optimized Design.- 6.4 WBIB and the Optimized Multibus System.- 6.4.1 Examples of WBIB.- 6.4.2 Definitions of WBIB Design.- 6.4.3 WBIB Design for ?=2.- 6.4.4 WBIB Design for ?=3.- 6.4.5 WBIB Design for ? and the Fault Tolerance Degree.- 7.5 Optimal Design.- 7.5.1 Cost Optimal.- 7.5.2 Tx (G) Optimal.- 7.6 Conclusion.- References.

ISBN: 9783540549628
ISBN-10: 3540549625
Audience: General
Format: Paperback
Language: English
Number Of Pages: 197
Publisher: Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg
Country of Publication: DE
Dimensions (cm): 24.13 x 17.02  x 1.02
Weight (kg): 0.36