+612 9045 4394
 
CHECKOUT
Efficient Dynamic Simulation of Robotic Mechanisms : VLSI, Computer Architecture, and Digital Signal Processing - Kathryn W. Lilly

Efficient Dynamic Simulation of Robotic Mechanisms

VLSI, Computer Architecture, and Digital Signal Processing

Hardcover

Published: 30th November 1992
Ships: 7 to 10 business days
7 to 10 business days
RRP $574.99
$397.75
31%
OFF
or 4 easy payments of $99.44 with Learn more
if ordered within

Other Available Formats (Hide)

  • Paperback View Product Published: 27th September 2012
    $204.16

Efficient Dynamic Simulation of Robotic Mechanisms presents computationally efficient algorithms for the dynamic simulation of closed-chain robotic systems. In particular, the simulation of single closed chains and simple closed-chain mechanisms is investigated in detail. Single closed chains are common in many applications, including industrial assembly operations, hazardous remediation, and space exploration. Simple closed-chain mechanisms include such familiar configurations as multiple manipulators moving a common load, dexterous hands, and multi-legged vehicles. The efficient dynamics simulation of these systems is often required for testing an advanced control scheme prior to its implementation, to aid a human operator during remote teleoperation, or to improve system performance.
In conjunction with the dynamic simulation algorithms, efficient algorithms are also derived for the computation of the joint space and operational space inertia matrices of a manipulator. The manipulator inertia matrix is a significant component of any robot dynamics formulation and plays an important role in both simulation and control. The efficient computation of the inertia matrix is highly desirable for real-time implementation of robot dynamics algorithms. Several alternate formulations are provided for each inertia matrix.
Computational efficiency in the algorithm is achieved by several means, including the development of recursive formulations and the use of efficient spatial transformations and mathematics. All algorithms are derived and presented in a convenient tabular format using a modified form of spatial notation, a six-dimensional vector notation which greatly simplifies the presentation and analysis of multibody dynamics. Basic definitions and fundamental principles required to use and understand this notation are provided. The implementation of the efficient spatial transformations is also discussed in some detail. As a means of evaluating efficiency, the number of scalar operations (multiplications and additions) required for each algorithm is tabulated after its derivation. Specification of the computational complexity of each algorithm in this manner makes comparison with other algorithms both easy and convenient.
The algorithms presented in Efficient Dynamic Simulation of Robotic Mechanisms are among the most efficient robot dynamics algorithms available at this time. In addition to computational efficiency, special emphasis is also placed on retaining as much physical insight as possible during algorithm derivation. The algorithms are easy to follow and understand, whether the reader is a robotics novice or a seasoned specialist.

` The case for recommending this book is that it represents a state of development in the formulation of efficient algorithms and that it holds a record that specialists can argue over and try to beat. ' Proceedings of the Institution of Mechanical Engineers, 208

Introductionp. 1
System Modelling and Notationp. 9
Alternate Formulations for the Joint Space Inertia Matrixp. 19
Alternate Formulations for the Operational Space Inertia Matrixp. 41
Efficient Dynamic Simulation of a Single Closed Chainp. 77
Efficient Dynamic Simulation of Simple Closed-Chain Mechanismsp. 105
Bibliographyp. 129
Indexp. 133
Table of Contents provided by Blackwell. All Rights Reserved.

ISBN: 9780792392866
ISBN-10: 0792392868
Series: VLSI, Computer Architecture, and Digital Signal Processing
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 136
Published: 30th November 1992
Publisher: SPRINGER VERLAG GMBH
Country of Publication: NL
Dimensions (cm): 23.39 x 15.6  x 1.12
Weight (kg): 0.41