+612 9045 4394
 
CHECKOUT
Descent Directions and Efficient Solutions in Discretely Distributed Stochastic Programs : Lecture Notes in Economic and Mathematical Systems - Kurt Marti

Descent Directions and Efficient Solutions in Discretely Distributed Stochastic Programs

Lecture Notes in Economic and Mathematical Systems

Paperback

Ships: 5 to 9 business days
5 to 9 business days
$158.39
or 4 easy payments of $39.60 with Learn more

In engineering and economics a certain vector of inputs or decisions must often be chosen, subject to some constraints, such that the expected costs arising from the deviation between the output of a stochastic linear system and a desired stochastic target vector are minimal. In many cases the loss function u is convex and the occuring random variables have, at least approximately, a joint discrete distribution. Concrete problems of this type are stochastic linear programs with recourse, portfolio optimization problems, error minimization and optimal design problems. In solving stochastic optimization problems of this type by standard optimization software, the main difficulty is that the objective function F and its derivatives are defined by multiple integrals. Hence, one wants to omit, as much as possible, the time-consuming computation of derivatives of F. Using the special structure of the problem, the mathematical foundations and several concrete methods for the computation of feasible descent directions, in a certain part of the feasible domain, are presented first, without any derivatives of the objective function F. It can also be used to support other methods for solving discretely distributed stochastic programs, especially large scale linear programming and stochastic approximation methods.

Contents: Stochastic programs with a discrete distribution; Stochastic dominance (SD) and the construction of feasible descent directions; Convex programs for solving (3.1)-(3.4a),(3.5); Stationary points (efficient solutions) of (SOP); Optimal solutions of (Px,D),(Px,D); Optimal solutions (y*,T*) of (Px,D) having Tij>0 for all i S,j R; Existence of solutions of the SD-conditions (3.1.)-(3.5), (12.1)-(12.5), resp; Representation of stationary points; Construction of solutions (y,T) of (12.1)-12.4) by means of formula (44); Construction of solutions (y,B) of (46) by using representation (60) of (A( ),b( )),- References; Index.

ISBN: 9783540187783
ISBN-10: 3540187782
Series: Lecture Notes in Economic and Mathematical Systems
Audience: General
Format: Paperback
Language: English
Number Of Pages: 183
Publisher: Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg
Country of Publication: DE
Dimensions (cm): 24.41 x 16.99  x 1.07
Weight (kg): 0.33