+612 9045 4394
 
CHECKOUT
Computational Methods for Electromagnetics : IEEE/OUP Series on Electromagnetic Wave Theory - Andrew F. Peterson

Computational Methods for Electromagnetics

IEEE/OUP Series on Electromagnetic Wave Theory

Hardcover

Published: 26th December 1997
Ships: 7 to 10 business days
7 to 10 business days
RRP $599.99
$415.75
31%
OFF
or 4 easy payments of $103.94 with Learn more

<i>Computational Methods for Electromagnetics</i> is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment. Employing a unified coherent approach that is unmatched in the field, the authors detail both integral and differential equations using the method of moments and finite-element procedures. In addition, readers will gain a thorough understanding of numerical solution procedures. <p> Topics covered include: <ul> <LI> Two- and three-dimensional integral equation/method-of-moments formulations <LI> Open-region finite-element formulations based on the scalar and vector Helmholtz equations <LI> Finite difference time-domain methods <LI> Direct and iterative algorithms for the solutions of linear systems <LI> Error analysis and the convergence behavior of numerical results <LI> Radiation boundary conditions <LI> Acceleration methods for periodic Green's functions <LI> Vector finite elements </ul> Detail is provided to enable the reader to implement concepts in software and, in addition, a collection of related computer programs are available via the Internet. <i>Computational Methods for Electromagnetics</i> is designed for graduate-level classroom use or self-study, and every chapter includes problems. It will also be of particular interest to engineers working in the aerospace, defense, telecommunications, wireless, electromagnetic compatibility, and electronic packaging industries.

Preface.

Acknowledgments.

Electromagnetic Theory.

Integral Equation Methods for Scattering from Infinite Cylinders.

Differential Equation Methods for Scattering from Infinite Cylinders.

Algorithms for the Solution of Linear Systems of Equations.

The Discretization Process.

Basis/Testing Functions and Convergence.

Alternative Surface Integral Equation Formulations.

Strip Gratings and Other Two-Dimensional Structures with One-Dimensional Periodicity.

Three-Dimensional problems with Translational or Rotational Symmetry.

Subsectional Basis Functions for MultiDimensional and Vector Problems.

Integral Equation Methods for Three-Dimensional Bodies.

Frequency-Domain Differential Equation Formulations for Open Three-Dimensional Problems.

Finite-Difference Time-Domain Methods on Orthogonal Meshes.

Appendix A: Quadrature.

Appendix B: Source-Field Relationships for Cylinders Illuminated by an Obliquely Incident Field.

Appendix C: Fortran Codes for TM Scattering From Perfect Electric Conducting Cylinders.

Appendix D: Additional Software Available Via the Internet.

Index.

About the Authors.

ISBN: 9780780311220
ISBN-10: 0780311221
Series: IEEE/OUP Series on Electromagnetic Wave Theory
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 592
Published: 26th December 1997
Country of Publication: US
Dimensions (cm): 26.26 x 18.75  x 3.84
Weight (kg): 1.18
Edition Number: 1