+612 9045 4394
 
CHECKOUT
Chaos Near Resonance : Applied Mathematical Sciences - G. Haller

Chaos Near Resonance

Applied Mathematical Sciences

By: G. Haller

Hardcover

Published: 24th September 1999
Ships: 7 to 10 business days
7 to 10 business days
RRP $304.99
$211.25
31%
OFF
or 4 easy payments of $52.81 with Learn more

Other Available Formats (Hide)

  • Paperback View Product Published: 17th October 2012
    $198.22

Resonances are ubiquitous in dynamical systems with many degrees of freedom. They have the basic effect of introducing slow-fast behavior in an evolutionary system which, coupled with instabilities, can result in highly irregular behavior. This book gives a unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, a general finite dimensional theory of homoclinic jumping is developed and illustrated with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context. Previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds are described. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics. The theory is further used to study resonances in Hamiltonian systems with applications to molecular dynamics and rigid body motion. The final chapter contains an infinite dimensional extension of the finite dimensional theory, with application to the perturbed nonlinear Schrodinger equation and coupled NLS equations.

"An extensive bibliography and the many examples make this clearly-written book an excellent introduction to these techniques for identifying chaos in perturbations of systems with resonance." Applied Mechanics Reviews, Vol. 53/4, April 2000

"Haller makes a point of wanting to see dynamical systems theory fulfil "its long-standing promise to solve real-life problems". His book, through a wealth of detailed examples, delivers on this promise, and is certain ti become a standard text in this area. In particular, it is an excellent introduction to this research area, and contains a wealth of bibliographical and historical detail. Matthew Nicol, Bulletin of the LMS, No. 162, Vol. 33/3, May 2001

Preface
Concepts From Dynamical Systemsp. 1
Chaotic Jumping Near Resonances: Finite-Dimensional Systemsp. 56
Chaos Due to Resonances in Physical Systemsp. 159
Resonances in Hamiltonian Systemsp. 231
Chaotic Jumping Near Resonances: Infinite-Dimensional Systemsp. 286
Elements of Differential Geometryp. 371
Some Facts From Analysisp. 390
Referencesp. 401
Symbol Indexp. 421
Indexp. 423
Table of Contents provided by Blackwell. All Rights Reserved.

ISBN: 9780387986975
ISBN-10: 0387986979
Series: Applied Mathematical Sciences
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 430
Published: 24th September 1999
Publisher: Springer-Verlag New York Inc.
Country of Publication: US
Dimensions (cm): 23.5 x 15.5  x 3.18
Weight (kg): 1.78