+612 9045 4394
 
CHECKOUT
Cell and Tissue Culture in Forestry : Cell and Tissue Culture in Forestry Specific Principles and Methods: Growth and Development Volume 2 - Jan M. Bonga

Cell and Tissue Culture in Forestry

Cell and Tissue Culture in Forestry Specific Principles and Methods: Growth and Development Volume 2

By: Jan M. Bonga (Editor), Don Durzan (Editor)

Hardcover

Published: 31st December 1986
Ships: 7 to 10 business days
7 to 10 business days
RRP $1004.99
$695.90
31%
OFF
or 4 easy payments of $173.98 with Learn more

Other Available Formats (Hide)

  • Paperback View Product Published: 30th December 2010
    $350.20
  • Paperback View Product Published: 30th December 2010
    $440.87
  • Paperback View Product Published: 16th December 2012
    $524.97

2. 2. Plant materials 2. 3. Pregrowth conditions 2. 4. Cryoprotectant treatment 2. 5. Freezing 2. 5. 1. Slow freezing 2. 5. 2. Rapid freezing 2. 5. 3. Droplet freezing 2. 6. Storage 2. 7. Thawing 2. 8. Viability testing 2. 9. Post-thaw regrowth 3. EXAMPLES OF CRYOPRESERVATION OF WOODY PLANT MATERIAL 4. POTENTIAL APPLICATION OF CRYOPRESERVATION IN TREE IMPROVEMENT 17. NURSERY HANDLING OF PROPAGULES - J. A. Driver, and 320 G. R. L. Suttle 1. INTRODUCTION 2. COMMERCIAL NURSERY NEEDS VS. LABORATORY PRACTICE 3. SEASONALITY OF GROWTH AND PRODUCTION CYCLES 4. MICROPROPAGATION OPTIONS 4. 1. Trends in commercial micropropagation 4. 1. 1. Contract micropropagation 5. FACTORS AFFECTING SURVIVAL AND GROWTH 5. 1. Hardening of propagules in vitro 5. 2. Greenhouse considerationS------ 5. 3. Field planting 5. 4. New approaches: Direct field rooting 5. 4. 1. Pretreatment in vitro 5. 4. 2. Root induction 5. 4. 3. Field placement 18. MYCORRHIZAE - R. K. Dixon, and D. H. Marx 336 1. INTRODUCTION 2. ROLE OF MYCORRHIZAE IN TREE GROWTH AND DEVELOPMENT 3. PRODUCTION AND APPLICATION OF ECTOMYCORRHIZAL FUNGUS INOCULUM 3. 1. Bareroot stock 3. 2. Container-grown stock 4. FIELD TRIALS WITH ECTOMYCORRHIZAL PLANTING STOCK 5. PRODUCTION AND APPLICATION OF ENDOMYCORRHIZAL INOCULUM 6. FIELD TRIALS WITH ENDOMYCORRHIZAL 7. RESEARCH OPPORTUNITIES 8. SUMMARY 351 19. TISSUE CULTURE APPLICATIUN TO FOREST PATHOLOGY AND PEST CONTROL - A. M. Diner, and D. F. Karnosky 1. INTRODUCTION 2. HOST AND PATHOGEN: CULTURE AND CHALLENGE 2. 1.

`... the three volumes provide a comprehensive survey of the state of research, theoretical and practical problems, and of potential and actual applications of cell and tissue cultures in forest and some other woody plants. It will certainly be of great interest to research workers within various theoretical and applied fields of experimental botany and can assist in achieving commercial exploitation of in vitro technologies.' Biologia Plantarum, (1988) `Overall, the three volumes form a very comprehensive guide to the application of tissue culture to forestry improvement programmes. ... strongly recommended for inclusion in the library of every tissue culture laboratory.' Journal of Experimental Botany, 39:203 (1988)

1. Introduction.- 2. Conifer Protoplasts.- 1. Introduction.- 2. Starting Material.- 2.1. Organs.- 2.1.1. Cotyledons.- 2.1.2. Needles.- 2.1.3. Roots.- 2.2. Callus and cell suspensions.- 2.3. Pollen.- 3. Protoplast Isolation.- 3.1. Enzymatic solutions.- 3.2. Isolation procedures.- 3.3. Purification of protoplasts.- 3.4. Yield and viability.- 4. Protoplast Culture.- 4.1. Culture conditions.- 4.2. Protoplast behavior.- 4.2.1. Protoplast morphology.- 4.2.2. Cell wall regeneration.- 4.2.3. Division of cells derived from protoplasts.- 5. Conclusion.- 3. Protoplast Culture of Hardwoods.- 1. Introduction.- 2. Requirements of a Successful Protoplast System.- 2.1. Isolation.- 2.1.1. Source tissue.- 2.1.2. Protoplast release from the source tissue.- 2.2. Protoplast plating/culture.- 2.3. Early development of protoplasts.- 2.4. Regeneration of shoots.- 3. Concluding Remarks.- 4. Biochemistry of Forest Tree Species in Culture.- 1. Introduction.- 2. Biochemistry.- 2.1. Metabolic activities and growth patterns.- 2.2. Nutrient uptake.- 2.3. Primary metabolism.- 2.3.1. Carbohydrate metabolism.- 2.3.2. Nitrogen metabolism.- 2.4. Cell wall metabolism.- 2.5. Secondary metabolism.- 3. Conclusion.- 5. Somatic Embryogenesis in Woody Perennials.- 1. Introduction.- 1.1. Extent of this review.- 1.2. Definition of terms.- 1.3. Woody perennials.- 2. Methods.- 2.1. Expiant source.- 2.2. General requirements.- 2.3. Quantitation.- 2.4. Media requirements.- 2.5. Media effects.- 2.6. Inhibitors and promoters.- 2.7. Other factors.- 3. Somatic Embryo Development.- 3.1. Origin and development.- 3.2. Protoplasts and cell suspensions.- 3.3. Abnormal development.- 4. Plant Development.- 4.1. Selection of somatic embryos for propagation.- 4.2. Dormancy.- 4.3. Germination.- 4.4. Transfer to soil.- 5. Physiology.- 5.1. Fatty acids.- 5.2. Plant growth regulators.- 5.3. Phenolics and polyamines.- 6. Discussion.- 6.1. Questions.- 6.2. Developmental patterns.- 6.3. Theories.- 6.4. Clones or variants.- 7. Conclusion.- 6. Ammohia: its Analogues, Metabolic Products and Site of Action in Somatic Embryogenesis.- 1. Introduction.- 2. Localization of Ammonia Assimilation.- 3. Ports of Entry for Reduced Nitrogen.- 3.1. Gdh, Gs/Gogat.- 3.2. Alternative ports of entry.- 4. Genetic Regulation.- 4.1. Glutamine synthetase.- 4.2. Transcription.- 4.3. Stress and DNA repair.- 5. Effects of Ammonia.- 5.1. Acidification.- 5.2. Effect of ammonia on nitrate assimilation.- 5.3. Effect of sulfate assimilation.- 5.4. Effect of carbon dioxide assimilation.- 5.4.1. Role of carbamates and other spontaneous reaction products of ammonia.- 5.4.1.1. Carbamates.- 5.4.1.2. Ribulose biphosphate carboxylase-oxygenase.- 5.4.1.3. Carbonic anhydrase.- 6. Other Pivotal Products.- 6.1. Urea.- 6.2. Urease reversal.- 6.3. Role of amines and carbamates.- 6.4. Cyanate-14C.- 6.5. Cyanide.- 6.6. Thiourea and guanidine.- 6.7. Cyanamide.- 7. N Transfers and Release in Embryogenesis: Internal Sources of Ammonia.- 7.1. Nitrogen transfer and release.- 7.2. Attenuation of amino acid biosynthesis.- 8. Need For Diagnostic Specificity.- 7. Embryo Culture.- 1. Introduction.- 2. Historical Background.- 3. Embryo Culture.- 3.1. Embryo culture of gymnosperm tree species.- 3.1.1. Culture of nearly mature or mature embryos.- 3.1.2. Culture of proembryos.- 3.2. Embryo culture of angiosperm tree species.- 3.2.1. Culture of nearly mature or mature embryos.- 3.2.2. Culture of proembryos.- 4. Embryo Rescue.- 5. in Ovulo Embryo Culture.- 6. in Vitro Pollination and Fertilization.- 7. Concluding Remarks.- 8. in vitro Control of Morphogenesis in Conifers.- 1. Introduction.- 2. Regeneration of Plantlets from Tissues of Mature Douglas Fir (Pseudotsuga Menziesii (Mirb.) Franco).- 2.1. Material and methods.- 2.1.1. Nature of the expiants.- 2.2. Culture medium.- 2.2.1. Juvenile material.- 2.2.2. Mature material.- 2.3. Environmental conditions.- 2.3.1. Donor plants.- 2.3.2. Culture.- 2.4. Results.- 2.4.1. Juvenile stage expiants.- 2.4.2. Mature tissues.- 2.5. Discussion.- 3. Male and Female Cone Production in Sequoia Semperv1Rens Explants.- 3.1. Material and methods.- 3.1.1. Nature of expiants.- 3.1.2. Culture medium.- 3.1.3. Environmental conditions.- 3.1.4. Germination test.- 3.2. Results.- 3.2.1. Primary in vitro development of reproductive cones.- 3.2.2. Secondary shoot development from sexual cones 193in vitro.- 3.3. Discussion.- 4. Conclusions.- 9. Morphogenesis (Cytochemistry).- 1. Introduction.- 2. General Methods for Tissue Preparation for Cytochemical Staining.- 2.1. Preparation of tissues.- 2.2. Fixation.- 2.3. Dehydration, clearing and embedding procedures for paraffin and plastic sections.- 3. Cytochemical Staining Procedures.- 3.1. Localization of DNA by Feulgen reaction.- 3.2. Localization of RNA with Azure B.- 3.3. Localization of total proteins with Naphthol Yellow S.- 3.4. Localization of nuclear basic proteins (histones) with alkaline Fast Green.- 3.5. Localization of total carbohydrates by the periodic acid - Schiffs (PAS) reaction.- 3.6. Histochemical localization of lipids by Sudan Black B.- 4. Enzyme Histochemistry.- 4.1. Histochemical localization of succinic dehydrogenase.- 4.2. Localization of peroxidase activity.- 4.3. Localization of acid phosphatase activity.- 4.4. Localization of adenosine triphosphatase activity.- 4.5. Starch substrate film method for the localization of amylase activity.- 5. Applications of Histo- and Cytochemical Techniques in Tissue Culture.- 6. Conclusions.- 10. Root Formation.- 1. Introduction.- 2. Biological, Physical and Chemical Factors Affecting Rhizogenesis. their Putative Roles.- 2.1. Biological factors.- 2.2. Physical factors.- 2.3. Chemical factors.- 2.4. Growth regulators.- 3. Metabolic Changes Associated with Root Formation.- 3.1. Nucleic acids and proteins.- 3.2. Sugars, respiration, and photosynthesis.- 3.3. Phytohormones.- 3.4. Phenolics and related enzymes.- 3.5. Other aspects.- 4. Factors Influencing Root Formation in vitro.- 5. Concluding Remarks.- 11. Correlations Within the Tree.- 1. Introduction.- 2. Consequences of Tree Physiology.- 3. Juvenility and Topophysis.- 4. Mother Tree Pretreatments.- 5. Case Study: Douglas Fir.- 12. Haploids (Gymnosperms).- 1. Introduction.- 2. Sources Of Haploid Cells.- 2.1. Microgametophytes.- 2.2. Megagametophytes.- 2.3. Gametophyte formation in vitro.- 3. Behavior of Gametophytestn vitro.- 3.1. Normal ontogeny of the microgametophyte.- 3.2. Induced abnormalities.- 3.2.1. Microgametophytes.- 3.2.2. Megagametophytes.- 4. Ploidy of Tissues and Organs Derived from Gametophytes.- 5. Conclusion.- 13. Induction of Androgenesis in Hardwood Trees.- 1. Introduction.- 2. Prospects of Improvement of Woody Plants by Using Haploids.- 2.1. Utilization of haploids in the study of genetics.- 2.2. Utilization of haploids for woody plant improvement.- 2.2.1. Utilization in breeding new varieties.- 2.2.2. Utilization of pure lines for heterosis.- 2.2.3. Gene mutation at the haploid cell level.- 2.2.4. Genetic manipulation by haploid cell hybridization.- 3. Morphogenesis in Anther Culture.- 3.1. Duration of culture.- 3.2. Ontogenesis of embryoids and plantlets.- 3.2.1. A pollen grain develops directly into an embryoid and then into a plantlet.- 3.2.2. A pollen grain develops into a callus which then differentiates into a cluster of embryoids.- 3.2.3. A pollen grain develops into an embryoid, the hypocotyl and cotyledon primordia of which produce several secondary embryoids.- 3.2.4. A pollen grain develops into a callus and the latter differentiates into a bud or a cluster of buds having the same genotype.- 3.3. Asynchrony of organogenesis in the embryoid.- 3.4. Causes of abnormal embryoid formation.- 4. Androgenesis and Culture Medium.- 4.1. Poplar.- 4.2. Chinese crabapple and apple.- 4.3. Chinese wolfberry and trifoliate orange.- 4.4. Horse-chesnut and litchi.- 4.5. Rubber tree.- 4.6. Longan.- 4.7. Grape, orange and tea.- 5. Variation of Chromosome Number.- 5.1. Chromosome number in pollen embryoids and plantlets.- 5.2. Variation of chromosome number in transplanted trees.- 6. Methodology for Evaluation of Pollen Trees.- 14. Triploids.- 1. Introduction.- 2. Endosperm.- 2.1. Ontogeny.- 3. In vitro Culture.- 3.1. Early work.- 3.2. Organogenesis in endosperm cultures.- 3.3. Organogenesis in naturally occurring triploids.- 3.4. Embryogenesis.- 3.4.1. Embryogenesis in sandalwood.- 3.4.2. Nutritional requirements.- 3.4.3. Advantages of embryogenesis over organogenesis.- 3.5. Protoplast culture.- 4. Applications.- 4.1. Plant improvement.- 4.2. Biochemical studies.- 15. Cold Storage of Tissue Cultures.- 1. Introduction.- 2. Methodology of Cold Storage.- 2.1. Materials.- 2.1.1. Type of culture.- 2.1.2. Physiological state.- 2.1.3. Substrate.- 2.1.4. Containers.- 2.2. Conditions for cold storage.- 2.2.1. Equipment and design.- 2.2.2. Temperature.- 2.2.3. Light.- 2.2.4. Humidity and free water.- 2.2.5. Space.- 3. Factors Affecting Cold Storage.- 3.1. Requirement for subculture.- 3.2. Length of time in cold storage.- 3.3. Survival.- 3.4. Stability.- 4. Ultrastructure of Cold-Stored Cells.- 5. Uses for Cold Storage.- 5.1. Short-term uses.- 5.2. Long-term uses.- 6. Conclusions.- 16. Cryopreservation of Woody Species.- 1. Introduction.- 2. General Procedure.- 2.1. Background.- 2.2. Plant materials.- 2.3. Pregrowth conditions.- 2.4. Cryoprotectant treatment.- 2.5. Freezing.- 2.5.1. Slow freezing.- 2.5.2. Rapid freezing.- 2.5.3. Droplet freezing.- 2.6. Storage.- 2.7. Thawing.- 2.8. Viability testing.- 2.9. Post-thaw regrowth.- 3. Examples of Cryopreservation of Woody Plant Material.- 4. Potential Application of Cryopreservation in Tree Improvement.- 17. Nursery Handling of Propagules.- 1. Introduction.- 2. Commercial Nursery Needs Vs. Laboratory Practice.- 3. Seasonality of Growth and Production Cycles.- 4. Micropropagation Options.- 4.1. Trends in commercial micropropagation.- 4.1.1. Contract micropropagation.- 5. Factors Affecting Survival and Growth.- 5.1. Hardening of propagules in vitro.- 5.2. Greenhouse considerations.- 5.3. Field planting.- 5.4. New approaches: Direct field rooting.- 5.4.1. Pretreatment in vitro.- 5.4.2. Root induction.- 5.4.3. Field placement.- 18. Mycorrhizae.- 1. Introduction.- 2. Role of Mycorrhizae in Tree Growth and Development.- 3. Production and Application of Ectomycorrhizal Fungus Inoculum.- 3.1. Bareroot stock.- 3.2. Container-grown stock.- 4. Field Trials With Ectomycorrhizal Planting Stock.- 5. Production and Application of Endomycorrhizal Inoculum.- 6. Field Trials with Endomycorrhizal.- 7. Research Opportunities.- 8. Summary.- 19. Tissue Culture Application to Forest Pathology and Pest Control.- 1. Introduction.- 2. Host and Pathogen: Culture and Challenge.- 2.1. Organized tissues of the host.- 2.2. Cell cultures of the host.- 2.3. Monocultures of the pest.- 3. Somaclonal Variation.- 4. Virus and Mycoplasma Elimination.- 5. Genetic Vectors.- 6. Conclusion.- 20. Tumors.- 1. Introduction.- 2. Tumors of Fungal Origin.- 3. Tumors op Bacterial Origin.- 3.1. Tumors other than crown gall.- 3.2. Crown gall.- 4. Viral Tumors.- 5. Genetic Tumors.- 6. Tumors Caused by Insects.- 7. Tumors of Unknown Origin.- 7.1. Spruce tumors in North America.- 7.1.1. Description, development, origin.- 7.2. Tumors on other conifers in North America.- 7.3. Tumors in Europe.- 8. In vitro Culture.- 8.1. Spruce tumors.- 8.2. Birch tumors.- 9. Conclusion.- 21. Cell Suspension Cultures for the Study of Plant Cell Senescence.- 1. Introduction.- 2. Terminology and Cotext.- 2.1. Senescence and aging.- 2.2. Polycarpic and monocarpic senescence.- 2.3. Cellular senescence.- 2.4. Fruit senescence in a phenomenological context.- 3. Senescence of Cultured Pear Fruit Cells.- 3.1. Experimental.- 3.2. Synopsis of results.- 3.2.1. Pattern of cell growth and death.- 3.2.2. Respiration.- 3.2.3. Macromolecular synthesis.- 3.2.4. Cyanide resistant respiration (CN-R).- 3.2.5. Ribosomal response to temperature stress.- 3.2.6. Ethylene biosynthesis.- 3.2.7. Response to ethylene.- 3.2.8. Leakage and ultrastructural change.- 3.2.9. Response to spermidine.- 4. Discussion.- 4.1. Cultured cells as prototypes for the study of cellular senescence.- 4.2. Constraints.- 4.3. Potentials.- 5. Conclusions.- 22. Physiological States and Metabolic Phenotypes in Embryonic Development.- 1. Introduction.- 2. State Network Maps.- 2.1. Gene expression in development.- 2.2. Map construction: Metabolic networks.- 2.2.1. Correlations with protein and nucleic acids.- 2.2.2. Networks as carriers of information.- 2.3. Map construction: Physiological states.- 2.4. State-network maps.- 3. Map Features.- 3.1. Threshold types.- 3.2. Stability.- 3.3. Sequential signals.- 3.4. Bifurcations.- 3.5. Process control: global relatedness.- 3.6. Mnemic theories: "Engrams".- 4. Process Control.- 4.1. Metabolic control.- 4.2. Simple feedback model and local optimization.- 4.3. Metabolic pursuit.- 5. Some Implications and Uses.- 5.1. Tree physiology.- 5.2. Tree breeding and improvement.- 6 Conclusions.- Tree species index.- General index.

ISBN: 9789024734313
ISBN-10: 9024734312
Series: Forestry Sciences : Book 2
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 448
Published: 31st December 1986
Publisher: Springer
Country of Publication: NL
Dimensions (cm): 24.77 x 17.15  x 3.18
Weight (kg): 0.89