1. Introduction.- 2. Conifer Protoplasts.- 1. Introduction.- 2. Starting Material.- 2.1. Organs.- 2.1.1. Cotyledons.- 2.1.2. Needles.- 2.1.3. Roots.- 2.2. Callus and cell suspensions.- 2.3. Pollen.- 3. Protoplast Isolation.- 3.1. Enzymatic solutions.- 3.2. Isolation procedures.- 3.3. Purification of protoplasts.- 3.4. Yield and viability.- 4. Protoplast Culture.- 4.1. Culture conditions.- 4.2. Protoplast behavior.- 4.2.1. Protoplast morphology.- 4.2.2. Cell wall regeneration.- 4.2.3. Division of cells derived from protoplasts.- 5. Conclusion.- 3. Protoplast Culture of Hardwoods.- 1. Introduction.- 2. Requirements of a Successful Protoplast System.- 2.1. Isolation.- 2.1.1. Source tissue.- 2.1.2. Protoplast release from the source tissue.- 2.2. Protoplast plating/culture.- 2.3. Early development of protoplasts.- 2.4. Regeneration of shoots.- 3. Concluding Remarks.- 4. Biochemistry of Forest Tree Species in Culture.- 1. Introduction.- 2. Biochemistry.- 2.1. Metabolic activities and growth patterns.- 2.2. Nutrient uptake.- 2.3. Primary metabolism.- 2.3.1. Carbohydrate metabolism.- 2.3.2. Nitrogen metabolism.- 2.4. Cell wall metabolism.- 2.5. Secondary metabolism.- 3. Conclusion.- 5. Somatic Embryogenesis in Woody Perennials.- 1. Introduction.- 1.1. Extent of this review.- 1.2. Definition of terms.- 1.3. Woody perennials.- 2. Methods.- 2.1. Expiant source.- 2.2. General requirements.- 2.3. Quantitation.- 2.4. Media requirements.- 2.5. Media effects.- 2.6. Inhibitors and promoters.- 2.7. Other factors.- 3. Somatic Embryo Development.- 3.1. Origin and development.- 3.2. Protoplasts and cell suspensions.- 3.3. Abnormal development.- 4. Plant Development.- 4.1. Selection of somatic embryos for propagation.- 4.2. Dormancy.- 4.3. Germination.- 4.4. Transfer to soil.- 5. Physiology.- 5.1. Fatty acids.- 5.2. Plant growth regulators.- 5.3. Phenolics and polyamines.- 6. Discussion.- 6.1. Questions.- 6.2. Developmental patterns.- 6.3. Theories.- 6.4. Clones or variants.- 7. Conclusion.- 6. Ammohia: its Analogues, Metabolic Products and Site of Action in Somatic Embryogenesis.- 1. Introduction.- 2. Localization of Ammonia Assimilation.- 3. Ports of Entry for Reduced Nitrogen.- 3.1. Gdh, Gs/Gogat.- 3.2. Alternative ports of entry.- 4. Genetic Regulation.- 4.1. Glutamine synthetase.- 4.2. Transcription.- 4.3. Stress and DNA repair.- 5. Effects of Ammonia.- 5.1. Acidification.- 5.2. Effect of ammonia on nitrate assimilation.- 5.3. Effect of sulfate assimilation.- 5.4. Effect of carbon dioxide assimilation.- 5.4.1. Role of carbamates and other spontaneous reaction products of ammonia.- 5.4.1.1. Carbamates.- 5.4.1.2. Ribulose biphosphate carboxylase-oxygenase.- 5.4.1.3. Carbonic anhydrase.- 6. Other Pivotal Products.- 6.1. Urea.- 6.2. Urease reversal.- 6.3. Role of amines and carbamates.- 6.4. Cyanate-14C.- 6.5. Cyanide.- 6.6. Thiourea and guanidine.- 6.7. Cyanamide.- 7. N Transfers and Release in Embryogenesis: Internal Sources of Ammonia.- 7.1. Nitrogen transfer and release.- 7.2. Attenuation of amino acid biosynthesis.- 8. Need For Diagnostic Specificity.- 7. Embryo Culture.- 1. Introduction.- 2. Historical Background.- 3. Embryo Culture.- 3.1. Embryo culture of gymnosperm tree species.- 3.1.1. Culture of nearly mature or mature embryos.- 3.1.2. Culture of proembryos.- 3.2. Embryo culture of angiosperm tree species.- 3.2.1. Culture of nearly mature or mature embryos.- 3.2.2. Culture of proembryos.- 4. Embryo Rescue.- 5. in Ovulo Embryo Culture.- 6. in Vitro Pollination and Fertilization.- 7. Concluding Remarks.- 8. in vitro Control of Morphogenesis in Conifers.- 1. Introduction.- 2. Regeneration of Plantlets from Tissues of Mature Douglas Fir (Pseudotsuga Menziesii (Mirb.) Franco).- 2.1. Material and methods.- 2.1.1. Nature of the expiants.- 2.2. Culture medium.- 2.2.1. Juvenile material.- 2.2.2. Mature material.- 2.3. Environmental conditions.- 2.3.1. Donor plants.- 2.3.2. Culture.- 2.4. Results.- 2.4.1. Juvenile stage expiants.- 2.4.2. Mature tissues.- 2.5. Discussion.- 3. Male and Female Cone Production in Sequoia Semperv1Rens Explants.- 3.1. Material and methods.- 3.1.1. Nature of expiants.- 3.1.2. Culture medium.- 3.1.3. Environmental conditions.- 3.1.4. Germination test.- 3.2. Results.- 3.2.1. Primary in vitro development of reproductive cones.- 3.2.2. Secondary shoot development from sexual cones 193in vitro.- 3.3. Discussion.- 4. Conclusions.- 9. Morphogenesis (Cytochemistry).- 1. Introduction.- 2. General Methods for Tissue Preparation for Cytochemical Staining.- 2.1. Preparation of tissues.- 2.2. Fixation.- 2.3. Dehydration, clearing and embedding procedures for paraffin and plastic sections.- 3. Cytochemical Staining Procedures.- 3.1. Localization of DNA by Feulgen reaction.- 3.2. Localization of RNA with Azure B.- 3.3. Localization of total proteins with Naphthol Yellow S.- 3.4. Localization of nuclear basic proteins (histones) with alkaline Fast Green.- 3.5. Localization of total carbohydrates by the periodic acid - Schiffs (PAS) reaction.- 3.6. Histochemical localization of lipids by Sudan Black B.- 4. Enzyme Histochemistry.- 4.1. Histochemical localization of succinic dehydrogenase.- 4.2. Localization of peroxidase activity.- 4.3. Localization of acid phosphatase activity.- 4.4. Localization of adenosine triphosphatase activity.- 4.5. Starch substrate film method for the localization of amylase activity.- 5. Applications of Histo- and Cytochemical Techniques in Tissue Culture.- 6. Conclusions.- 10. Root Formation.- 1. Introduction.- 2. Biological, Physical and Chemical Factors Affecting Rhizogenesis. their Putative Roles.- 2.1. Biological factors.- 2.2. Physical factors.- 2.3. Chemical factors.- 2.4. Growth regulators.- 3. Metabolic Changes Associated with Root Formation.- 3.1. Nucleic acids and proteins.- 3.2. Sugars, respiration, and photosynthesis.- 3.3. Phytohormones.- 3.4. Phenolics and related enzymes.- 3.5. Other aspects.- 4. Factors Influencing Root Formation in vitro.- 5. Concluding Remarks.- 11. Correlations Within the Tree.- 1. Introduction.- 2. Consequences of Tree Physiology.- 3. Juvenility and Topophysis.- 4. Mother Tree Pretreatments.- 5. Case Study: Douglas Fir.- 12. Haploids (Gymnosperms).- 1. Introduction.- 2. Sources Of Haploid Cells.- 2.1. Microgametophytes.- 2.2. Megagametophytes.- 2.3. Gametophyte formation in vitro.- 3. Behavior of Gametophytestn vitro.- 3.1. Normal ontogeny of the microgametophyte.- 3.2. Induced abnormalities.- 3.2.1. Microgametophytes.- 3.2.2. Megagametophytes.- 4. Ploidy of Tissues and Organs Derived from Gametophytes.- 5. Conclusion.- 13. Induction of Androgenesis in Hardwood Trees.- 1. Introduction.- 2. Prospects of Improvement of Woody Plants by Using Haploids.- 2.1. Utilization of haploids in the study of genetics.- 2.2. Utilization of haploids for woody plant improvement.- 2.2.1. Utilization in breeding new varieties.- 2.2.2. Utilization of pure lines for heterosis.- 2.2.3. Gene mutation at the haploid cell level.- 2.2.4. Genetic manipulation by haploid cell hybridization.- 3. Morphogenesis in Anther Culture.- 3.1. Duration of culture.- 3.2. Ontogenesis of embryoids and plantlets.- 3.2.1. A pollen grain develops directly into an embryoid and then into a plantlet.- 3.2.2. A pollen grain develops into a callus which then differentiates into a cluster of embryoids.- 3.2.3. A pollen grain develops into an embryoid, the hypocotyl and cotyledon primordia of which produce several secondary embryoids.- 3.2.4. A pollen grain develops into a callus and the latter differentiates into a bud or a cluster of buds having the same genotype.- 3.3. Asynchrony of organogenesis in the embryoid.- 3.4. Causes of abnormal embryoid formation.- 4. Androgenesis and Culture Medium.- 4.1. Poplar.- 4.2. Chinese crabapple and apple.- 4.3. Chinese wolfberry and trifoliate orange.- 4.4. Horse-chesnut and litchi.- 4.5. Rubber tree.- 4.6. Longan.- 4.7. Grape, orange and tea.- 5. Variation of Chromosome Number.- 5.1. Chromosome number in pollen embryoids and plantlets.- 5.2. Variation of chromosome number in transplanted trees.- 6. Methodology for Evaluation of Pollen Trees.- 14. Triploids.- 1. Introduction.- 2. Endosperm.- 2.1. Ontogeny.- 3. In vitro Culture.- 3.1. Early work.- 3.2. Organogenesis in endosperm cultures.- 3.3. Organogenesis in naturally occurring triploids.- 3.4. Embryogenesis.- 3.4.1. Embryogenesis in sandalwood.- 3.4.2. Nutritional requirements.- 3.4.3. Advantages of embryogenesis over organogenesis.- 3.5. Protoplast culture.- 4. Applications.- 4.1. Plant improvement.- 4.2. Biochemical studies.- 15. Cold Storage of Tissue Cultures.- 1. Introduction.- 2. Methodology of Cold Storage.- 2.1. Materials.- 2.1.1. Type of culture.- 2.1.2. Physiological state.- 2.1.3. Substrate.- 2.1.4. Containers.- 2.2. Conditions for cold storage.- 2.2.1. Equipment and design.- 2.2.2. Temperature.- 2.2.3. Light.- 2.2.4. Humidity and free water.- 2.2.5. Space.- 3. Factors Affecting Cold Storage.- 3.1. Requirement for subculture.- 3.2. Length of time in cold storage.- 3.3. Survival.- 3.4. Stability.- 4. Ultrastructure of Cold-Stored Cells.- 5. Uses for Cold Storage.- 5.1. Short-term uses.- 5.2. Long-term uses.- 6. Conclusions.- 16. Cryopreservation of Woody Species.- 1. Introduction.- 2. General Procedure.- 2.1. Background.- 2.2. Plant materials.- 2.3. Pregrowth conditions.- 2.4. Cryoprotectant treatment.- 2.5. Freezing.- 2.5.1. Slow freezing.- 2.5.2. Rapid freezing.- 2.5.3. Droplet freezing.- 2.6. Storage.- 2.7. Thawing.- 2.8. Viability testing.- 2.9. Post-thaw regrowth.- 3. Examples of Cryopreservation of Woody Plant Material.- 4. Potential Application of Cryopreservation in Tree Improvement.- 17. Nursery Handling of Propagules.- 1. Introduction.- 2. Commercial Nursery Needs Vs. Laboratory Practice.- 3. Seasonality of Growth and Production Cycles.- 4. Micropropagation Options.- 4.1. Trends in commercial micropropagation.- 4.1.1. Contract micropropagation.- 5. Factors Affecting Survival and Growth.- 5.1. Hardening of propagules in vitro.- 5.2. Greenhouse considerations.- 5.3. Field planting.- 5.4. New approaches: Direct field rooting.- 5.4.1. Pretreatment in vitro.- 5.4.2. Root induction.- 5.4.3. Field placement.- 18. Mycorrhizae.- 1. Introduction.- 2. Role of Mycorrhizae in Tree Growth and Development.- 3. Production and Application of Ectomycorrhizal Fungus Inoculum.- 3.1. Bareroot stock.- 3.2. Container-grown stock.- 4. Field Trials With Ectomycorrhizal Planting Stock.- 5. Production and Application of Endomycorrhizal Inoculum.- 6. Field Trials with Endomycorrhizal.- 7. Research Opportunities.- 8. Summary.- 19. Tissue Culture Application to Forest Pathology and Pest Control.- 1. Introduction.- 2. Host and Pathogen: Culture and Challenge.- 2.1. Organized tissues of the host.- 2.2. Cell cultures of the host.- 2.3. Monocultures of the pest.- 3. Somaclonal Variation.- 4. Virus and Mycoplasma Elimination.- 5. Genetic Vectors.- 6. Conclusion.- 20. Tumors.- 1. Introduction.- 2. Tumors of Fungal Origin.- 3. Tumors op Bacterial Origin.- 3.1. Tumors other than crown gall.- 3.2. Crown gall.- 4. Viral Tumors.- 5. Genetic Tumors.- 6. Tumors Caused by Insects.- 7. Tumors of Unknown Origin.- 7.1. Spruce tumors in North America.- 7.1.1. Description, development, origin.- 7.2. Tumors on other conifers in North America.- 7.3. Tumors in Europe.- 8. In vitro Culture.- 8.1. Spruce tumors.- 8.2. Birch tumors.- 9. Conclusion.- 21. Cell Suspension Cultures for the Study of Plant Cell Senescence.- 1. Introduction.- 2. Terminology and Cotext.- 2.1. Senescence and aging.- 2.2. Polycarpic and monocarpic senescence.- 2.3. Cellular senescence.- 2.4. Fruit senescence in a phenomenological context.- 3. Senescence of Cultured Pear Fruit Cells.- 3.1. Experimental.- 3.2. Synopsis of results.- 3.2.1. Pattern of cell growth and death.- 3.2.2. Respiration.- 3.2.3. Macromolecular synthesis.- 3.2.4. Cyanide resistant respiration (CN-R).- 3.2.5. Ribosomal response to temperature stress.- 3.2.6. Ethylene biosynthesis.- 3.2.7. Response to ethylene.- 3.2.8. Leakage and ultrastructural change.- 3.2.9. Response to spermidine.- 4. Discussion.- 4.1. Cultured cells as prototypes for the study of cellular senescence.- 4.2. Constraints.- 4.3. Potentials.- 5. Conclusions.- 22. Physiological States and Metabolic Phenotypes in Embryonic Development.- 1. Introduction.- 2. State Network Maps.- 2.1. Gene expression in development.- 2.2. Map construction: Metabolic networks.- 2.2.1. Correlations with protein and nucleic acids.- 2.2.2. Networks as carriers of information.- 2.3. Map construction: Physiological states.- 2.4. State-network maps.- 3. Map Features.- 3.1. Threshold types.- 3.2. Stability.- 3.3. Sequential signals.- 3.4. Bifurcations.- 3.5. Process control: global relatedness.- 3.6. Mnemic theories: "Engrams".- 4. Process Control.- 4.1. Metabolic control.- 4.2. Simple feedback model and local optimization.- 4.3. Metabolic pursuit.- 5. Some Implications and Uses.- 5.1. Tree physiology.- 5.2. Tree breeding and improvement.- 6 Conclusions.- Tree species index.- General index.