+612 9045 4394
Astrophysics, Clocks and Fundamental Constants : Lecture Notes in Physics - Savely G. Karshenboim

Astrophysics, Clocks and Fundamental Constants

Lecture Notes in Physics

By: Savely G. Karshenboim (Editor), Ekkehard Peik (Editor)

Hardcover Published: December 2004
ISBN: 9783540219675
Number Of Pages: 347

Share This Book:


RRP $406.99
or 4 easy payments of $70.44 with Learn more
Ships in 7 to 10 business days

Earn 564 Qantas Points
on this Book

"The book presents reviews written by leading experts in the field. Focussing on the question of variations of the fundamental ""constants"" in time or space, the chapters cover the theoretical framework in which variations are expected and the search for variations of quantities like the fine-structure constant, the electron/proton mass ratio, g-factors of proton and neutron etc. in astrophysical and geophysical observations and in precision experiments with atomic clocks and frequency standards."

An Introduction to Varying Fundamental Constantsp. 1
Introductionp. 1
Fundamental Constantsp. 3
Variability of Fundamental Constantsp. 5
'Fundamentality' of the Fundamental Constantsp. 6
'Constancy' of the Fundamental Constantsp. 7
Intercorrelations Between the Fundamental Constantsp. 7
Variability of Fundamental Constants and Equivalence Principlep. 8
Astrophysical and Geophysical Search for a Variability of Constantsp. 9
New Frequency Standards and Constraints on Variation of Fundamental Constantsp. 10
Summary: Results and Open Questionsp. 15
Time and the Universep. 21
Introductionp. 21
The Cosmological Modelsp. 22
The History of the Universep. 25
The Cosmic Microwave Backgroundp. 26
The Inflationary Modelp. 30
Variation of the Fine Structure Constantp. 31
Conclusionsp. 31
Millisecond Pulsars as Tools of Fundamental Physicsp. 33
Introductionp. 33
Pulsarsp. 34
Pulsars as Neutron Starsp. 35
Pulsars as Radio Sourcesp. 35
A Pulsar's Lifep. 36
Normal Pulsarsp. 37
Millisecond Pulsarsp. 37
Pulsars as Clocksp. 38
Time Transferp. 38
Pulsar Timingp. 42
Applications of Pulsarsp. 44
PPN Parametersp. 44
Tests Using Double Neutron Starsp. 48
Tests Using Profile Structure Datap. 50
Recent Discoveriesp. 51
The Double-Pulsarp. 51
Conclusions and Outlookp. 53
Fundamental Constants
Fundamental Units: Physics and Metrologyp. 57
Introductionp. 57
Fundamental Parameters and Unitsp. 58
Planck Unitsp. 58
c, h, G - Unitsp. 59
Planck Units Are Impracticalp. 59
Units of Stoneyp. 63
Atomic Clocks and cp. 66
Towards a Kilogram Based on hp. 66
Kilogram as Frequency ¿¿p. 68
Electromagnetism and Relativityp. 68
Concluding Remarksp. 71
Constants, Units and Standardsp. 75
Introductionp. 75
Early Measurementsp. 76
The Fundamental Physical Constantsp. 76
Units and Standardsp. 78
Use of the Fundamental Constants to Form Systems of Unitsp. 79
Are the Constants Really Constant?p. 79
The CODATA Evaluationsp. 79
Changing Accuracyp. 80
Accuracy of Realization of the SI Unitsp. 82
Practical Realizations of the SI Units and the Involvement of Fundamental Constantsp. 82
The Josephson Effect Voltage Standardp. 83
The Quantised Hall Resistancep. 83
The Calculable Capacitorp. 83
The Moving Coil Watt Realization of Kibblep. 84
The Kilogramp. 85
The Anomalous g-Factor of the Electronp. 85
The Rydberg Constantp. 86
The Newtonian Constant of Gravitationp. 87
Underpinning of the SI by the Fundamental Physical Constantsp. 87
The Importance of the Fine Structure Constant in Metrologyp. 87
Conclusionp. 90
Futurep. 91
Summaryp. 92
Grand Unification and Quantum Gravity
Time Varying Fundamental Constants, Extra Dimensions and the Renormalization Groupp. 97
Dirac Revisited - The Hierarchy Problemp. 97
Fundamental Constants from a Modern Perspectivep. 99
Extra Dimensionsp. 101
Renormalization Group Connectionsp. 102
Examplesp. 103
Discussionsp. 104
Fundamental Constants and Their Possible Time Dependencep. 107
Introductionp. 107
Variation of Fundamental Constants and Grand Unificationp. 110
Quantum Gravity and Fundamental Constantsp. 115
Introductionp. 115
Quantum General Relativityp. 118
Superstring Theory ('M-theory')p. 121
Kaluza-Klein Theoriesp. 124
Conclusionp. 126
Astrophysical and Geochemical Search
Constraining Variations in the Fine-Structure Constant, Quark Masses and the Strong Interactionp. 131
Introductionp. 131
Varying ¿ from Quasar Absorption Linesp. 132
Quasar Absorption Linesp. 132
The Many-Multiplet (MM) Methodp. 132
Spectral Analysis and Updated Resultsp. 135
Recent Criticisms of the MM Methodp. 139
Isotopic Abundance Variationsp. 142
Varying ¿ and mq/¿QCD from Atomic Clocksp. 143
Introductionp. 143
Nuclear Magnetic Moments, ¿ and mq/¿QCDp. 144
Resultsp. 146
Conclusionsp. 148
Astrophysical Constraints on Hypothetical Variability of Fundamental Constantsp. 151
Introductionp. 151
Methods to Constrain ¿¿/¿ from QSO Absorption Spectrap. 153
The Alkali-Doublet (AD) Methodp. 153
The Many Multiplet (MM) Methodp. 154
The Regression MM Methodp. 158
Constraints on the Proton to Electron Mass Ratiop. 160
Conclusions and Future Prospectsp. 163
Oklo Constraint on the Time-Variability of the Fine-Structure Constantp. 167
What Is the Oklo Phenomenon?p. 167
How Did Shlyakhter Probe ¿¿?p. 168
How Good Is It?p. 170
How Can It Be Consistent with the QSO Result?p. 174
Bound on ¿¿/¿ from the Coulomb-Only Estimatep. 181
Distant Migration of the Higher Resonancesp. 182
Another 3-Parameter Fit with an Offsetp. 184
Precision Frequency Measurements with Neutral Atoms
Cold Atom Clocks, Precision Oscillators and Fundamental Testsp. 189
Introductionp. 189
Test of Local Position Invariance. Stability of Fundamental Constantsp. 190
Theoryp. 190
Experiments with 87Rb and 133Cs Fountain Clocksp. 193
Tests of Local Lorentz Invariancep. 197
Theoryp. 198
Experimental Resultsp. 201
Conclusion and Outlookp. 204
Precision Spectroscopy of Atomic Hydrogen and Variations of Fundamental Constantsp. 209
Introductionp. 209
Hydrogen Spectrometerp. 212
Frequency Measurementp. 215
Determination of Drift Ratesp. 221
Conclusionp. 225
An Optical Frequency Standard with Cold and Ultra-cold Calcium Atomsp. 229
Introductionp. 229
Methods and Experimental Realizationp. 230
Properties of the Calcium Standardp. 230
Production of Cold Ca Atoms (T ≈ 3 mK)p. 231
Production of Ultra-cold Atomsp. 232
Interrogation of the Clock Transitionp. 232
Uncertainty of the Optical Ca Frequency Standardp. 235
Residual First-order Doppler Shiftsp. 235
Other Phase Shiftsp. 236
Frequency Shifts Due to External Fieldsp. 236
Influence of Cold and Ultra-cold Atomic Collisionsp. 240
Uncertainty Budgetp. 240
Frequency Measurementsp. 241
Prospects of the Ca Optical Frequency Standardp. 242
Frequency Standards with a Single Trapped Ion
Trapped Ion Optical Frequency Standards for Laboratory Tests of Alpha-Variabilityp. 247
Introductionp. 247
The Single Ion as a Reference in an Optical Clockp. 248
Spectroscopy of the 435.5 nm Clock Transition of 171Yb+p. 250
Absolute Transition Frequency and Frequency Comparison Between Two Ionsp. 251
Search for Temporal Variation of the Fine-Structure Constantp. 254
Nuclear Optical Frequency Standard with Th-229p. 257
An Optical Frequency Standard Based on the Indium Ionp. 263
Introductionp. 263
Cooling of the Indium Ionp. 265
New Cooling Laser Systemp. 265
High-Resolution Spectroscopyp. 268
Absolute Frequency Measurementsp. 269
High-Resolution Molecular Spectroscopy
Applications of Femtosecond Laser Comb to Nonlinear Molecular Spectroscopyp. 275
Introduction to Femtosecond Optical Frequency Combp. 275
Molecular Spectroscopy Aided by Femtosecond Optical Frequency Combp. 281
I2 Hyperfine Interactions, Optical Frequency Standards and Clocksp. 283
Extend Phase-Coherent fs Combs to the Mid-IR Spectral Regionp. 288
Femtosecond Lasers and External Optical Cavitiesp. 290
Ultracold Trapped Molecules: Novel Systems for Tests of the Time-Independence of the Electron-to-Proton Mass Ratiop. 297
Introductionp. 297
Molecular Tests of Constancy of Electron-to-Nucleon Mass Ratiosp. 299
Sympathetic Cooling of Molecular Ions and Spectroscopyp. 301
Quantum Jump Spectroscopyp. 304
Conclusionp. 306
Space Missions and General Relativity
35 Years of Testing Relativistic Gravity: Where Do We Go from Here?p. 311
Introductionp. 311
Scientific Motivationp. 313
PPN Parameters and Their Current Limitsp. 313
Motivations for Precision Gravity Experimentsp. 314
Lunar Laser Ranging: A Unique Laboratory in Spacep. 318
LLR History and Scientific Backgroundp. 318
Equivalence Principle Testsp. 319
LLR Tests of the Equivalence Principlep. 321
LLR Tests of Other Gravitational Physics Parametersp. 322
APOLLO Contribution to the Tests of Gravityp. 323
New Test of Relativity: The LATOR Missionp. 324
Overview of LATORp. 324
The Expected Results from LATORp. 326
Conclusionsp. 328
Search for New Physics with Atomic Clocksp. 331
Introductionp. 331
The Instrumentp. 334
Temperature Induced Frequency Shiftsp. 338
Mission Designp. 339
Conclusionp. 340
Indexp. 342
Indexp. 343
Table of Contents provided by Publisher. All Rights Reserved.

ISBN: 9783540219675
ISBN-10: 3540219676
Series: Lecture Notes in Physics
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 347
Published: December 2004
Publisher: Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg
Country of Publication: DE
Dimensions (cm): 23.5 x 15.5  x 1.91
Weight (kg): 0.78

Earn 564 Qantas Points
on this Book