+612 9045 4394
Asphaltenes, Heavy Oils, and Petroleomics - Oliver C. Mullins

Hardcover Published: 1st November 2006
ISBN: 9780387317342
Number Of Pages: 670

Share This Book:


RRP $571.99
or 4 easy payments of $99.06 with Learn more
Ships in 7 to 10 business days

Other Available Editions (Hide)

  • Paperback View Product Published: 23rd November 2010

With substantial contributions from experienced industrial scientists and engineers, this work will have real application towards improving process efficiency and improvement in the trillion-dollar global petroleum industry. It presents an overview of the emerging field of petroleomics, which endeavors to understand the fundamental components of crude oil. Petroleomics promises to revolutionize petroleum science in much the same way that genomics transformed the study of medicine not long ago. Asphaltenes are a particular focus, with many chapters devoted to the analysis of their structure and properties.

Petroleomics and Structure-Function Relations of Crude Oils and Asphaltenes
Introductionp. 1
Evolution of the Oil Patchp. 5
Phenomological Petroleum Analysisp. 7
Petroleomicsp. 10
Building Up Petroleum Science-A Brief Outlinep. 10
Asphaltenes: An Update of the Yen Modelp. 13
Future Outlook in Petroleum Sciencep. 14
Referencesp. 16
Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization
Introductionp. 17
Overviewp. 17
Chemical Bonding of Functional Groups in Asphaltenesp. 18
Techniques Employed to Study the Size of Asphaltenesp. 18
Time-Resolved Fluorescence Depolarization (TRFD)p. 21
The Optical Range Relevant to Asphaltene Investigationsp. 22
Structure Predictions from TRFDp. 26
Theoryp. 27
The Spherical Modelp. 27
The Anisotropic Rotatorp. 30
Experimental Sectionp. 33
Optics Methodsp. 33
Sample Preparationp. 35
Solvent Resonant Quenching of Fluorescencep. 37
Results and Discussionp. 39
Basic TRFD of Asphaltenesp. 39
Many Virgin Crude Oil Asphaltenes-and Sulfoxidep. 43
Asphaltene Solubility Subfractionsp. 43
Asphaltenes and Resinsp. 45
Coal Asphaltenes versus Petroleum Asphaltenesp. 45
Thermally Processed Feed Stockp. 50
Alkyl-Aromatic Melting Pointsp. 53
Asphaltene Molecular Structure 'Like your Hand' or 'Archipelago'p. 54
Considerations of the Fluorescence of Asphaltenesp. 56
Asphaltene Molecular Diffusion; TRFD vs Other Methodsp. 57
Conclusionsp. 59
Referencesp. 60
Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)
Introductionp. 63
FT-ICR MSp. 65
Mass Accuracy and Mass Resolutionp. 67
Kendrick Mass and Kendrick Plotsp. 68
van Krevelen Diagramsp. 73
DBE and Z Numberp. 75
ESI for Access to Polarsp. 75
EI, FD, and APPI for Access to Nonpolarsp. 76
Molecular Weight Determination by Mass Spectrometryp. 78
Low Molecular Weight for Petroleum Componentsp. 79
Mass Spectrometry Caveatsp. 82
High Molecular Weight for Petroleum Componentsp. 83
Aggregationp. 84
Petroleomicsp. 87
Acknowledgmentsp. 88
Glossaryp. 89
Referencesp. 89
Molecular Orbital Calculations and Optical Transitions of PAHs and Asphaltenes
Introductionp. 95
Computational Detailsp. 100
Results and Discussionp. 102
Topological Characteristics of PAHsp. 103
The HOMO-LUMO Optical Transitionp. 106
Aromaticity in PAHs and Asphaltenes: Application of the Y-rulep. 119
The FAR Region in Asphaltenesp. 124
Most Likely PAH Structural Candidates of the FAR Region in Asphaltenes from 5 to 10 Aromatic Ringsp. 127
Conclusionsp. 135
Acknowledgmentsp. 135
Referencesp. 135
Carbon X-ray Raman Spectroscopy of PAHs and Asphaltenes
Introductionp. 139
Theoryp. 142
Experimentp. 143
Results and Discussionp. 145
Conclusion and Outlookp. 152
Acknowledgmentsp. 153
Referencesp. 153
Sulfur Chemical Moieties in Carbonaceous Materials
Introductionp. 157
Carbonaceous Materialsp. 159
Production and Deposition of Organic Matterp. 159
Diagenesisp. 160
Sulfur in Carbonaceous Sedimentsp. 161
Kerogen Formationp. 162
Coal and Kerogen Maceralsp. 162
Catagenesisp. 164
Asphaltene Fractions in Crude Oilsp. 165
X-Ray Absorption Near Edge Structure (XANES)p. 165
Experimental Sectionp. 168
Synchrotron Beamlinep. 168
Samplesp. 169
Least Squares Fitting Procedurep. 171
Results and Discussionsp. 172
Sulfur XANES on Kerogensp. 174
Sulfur XANES on Oil Fractionsp. 175
Sulfur K-Edge XANES on Coalsp. 176
Nitrogen XANESp. 178
Conclusionp. 183
Referencesp. 184
Introductionp. 189
Micelles in Aqueous Solutionsp. 190
Inverse Micellization in Nonpolar Mediap. 194
Asphaltene Association in Crude Oilsp. 199
Conclusionsp. 201
Acknowledgmentsp. 202
Referencesp. 202
Insights into Molecular and Aggregate Structures of Asphaltenes Using HRTEM
Introductionp. 205
Theory of HRTEM and Image Analysisp. 208
Basics of HRTEMp. 208
Quantitative Information from TEM Imagesp. 212
Experimental Sectionp. 218
Samplesp. 218
HRTEM Methodp. 218
Results and Discussionp. 219
Conclusionsp. 227
Acknowledgmentsp. 228
Referencesp. 228
Ultrasonic Spectroscopy of Asphaltene Aggregation
Introductionp. 231
Ultrasonic Spectroscopyp. 233
Ultrasonic Resonancesp. 234
Plane Wave Propagationp. 235
Experimental Sectionp. 236
Compressibility of Liquids and Ultrasonic Velocityp. 238
Micellar Aggregation Modelp. 238
Theoryp. 238
Experimental Results on Surfactantsp. 241
Experimental Results on Asphaltenesp. 247
Backgroundp. 247
Ultrasonic Determination of Various Asphaltenes Aggregation Propertiesp. 248
Comparison of Experimental Results on UG8 Asphaltenes and Maltenesp. 253
Differences Between Coal and Petroleum Asphaltenesp. 254
Conclusionp. 255
Referencesp. 255
Asphaltene Self-Association and Precipitation in Solvents-AC Conductivity Measurements
Introductionp. 259
Experimentalp. 264
Samplep. 264
Instrumentp. 264
Measurementp. 265
Theoryp. 266
Resultsp. 269
Discussion and Conclusionp. 274
Future Perspectivep. 276
Referencesp. 276
Molecular Composition and Dynamics of Oils from Diffusion Measurements
Introductionp. 279
General Theory of Molecular Diffusionp. 280
Experimental Methodp. 282
Mixtures of Alkanesp. 283
Chain-Length Dependencep. 284
Dependence on Mean Chain Length and Free Volume Modelp. 285
Comparison with Experimentsp. 287
Viscosityp. 289
Discussionp. 291
Dynamics Of Asphaltenes In Solutionp. 292
The Proton Spectrum of Asphaltene Solutionsp. 292
The Diffusion Constant and Diffusion Spectrump. 293
Discussionp. 294
Conclusionsp. 296
Acknowledgmentp. 296
Referencesp. 296
Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior
Introductionp. 301
Asphaltene Properties and Field Observationsp. 302
The Two Views of Asphaltene Interactionsp. 303
Our View and Approachp. 305
Introduction to SAFTp. 306
PC-SAFT Pure Component Parametersp. 307
PC-SAFT Characterization of a Recombined Oilp. 307
Comparison of Results and Analysis of Asphaltene Behaviorp. 313
Effect of Asphaltene Polydispersity on Phase Behaviorp. 317
Summary and Conclusionsp. 323
Acknowledgmentsp. 324
Referencesp. 325
Application of Isothermal Titration Calorimetry in the Investigation of Asphaltene Association
Introductionp. 329
The Concept of Micellizationp. 330
Experimentalp. 331
Asphaltene Separationp. 331
Application of ITC to Surfactantsp. 332
Nonaqueous Systemsp. 334
ITC Experiments with Asphaltene Solutions: Is There a CMC?p. 335
Modeling ITC Experimentsp. 338
Application of ITC to Various Aspects of Asphaltene Association and Interaction with Other Substancesp. 340
Investigation of Asphaltene Subfractionsp. 341
Effect of Methylation of Asphaltenesp. 343
Interaction of Asphaltene with Other Compoundsp. 345
Conclusionsp. 350
Acknowledgmentsp. 350
Referencesp. 351
Petroleomics and Characterization of Asphaltene Aggregates Using Small Angle Scattering
Introductionp. 353
Asphaltene Aggregationp. 355
SAXS and SANSp. 356
SAXS and SANS Instrumentsp. 362
SAXS and SANS Experiments and Resultsp. 364
SAXS Measurement on Ratawi Resin and Asphaltenep. 365
SANS Measurement on Asphaltene Aggregation, Emulsion, and Dispersant Effectp. 367
Discussionp. 371
Conclusionp. 372
Future Perspectivesp. 373
Acknowledgmentsp. 373
Referencesp. 373
Self-Assembly of Asphaltene Aggregates: Synchrotron, Simulation and Chemical Modeling Techniques Applied to Problems in the Structure and Reactivity of Asphaltenes
Introductionp. 375
WAXS Synchrotron Studies and Sample Preparationp. 377
SAXSp. 380
Fractal Objectsp. 381
Scattering from Mass Fractal Objectsp. 383
Scattering from a Surface Fractal Objectp. 383
SAXS Studies of Venezuelan and Mexican Asphaltenesp. 383
Self-Assembly of Synthetic Asphaltene Particlesp. 393
Conclusionsp. 399
Acknowledgmentsp. 399
Referencesp. 400
Solubility of the Least-Soluble Asphaltenes
Introductionp. 401
Importance of the Least-Soluble Asphaltenesp. 402
Detection of the Onset of Asphaltene Instabilityp. 403
Asphaltenes as Colloidal Dispersionsp. 403
Asphaltenes as Lyophilic Colloidsp. 405
Solubility of Large Moleculesp. 405
Solubility Parametersp. 406
Flory-Huggins Predictions: The Asphaltene Solubility Model (ASM)p. 412
Asphaltene Instability Trends (ASIST)p. 414
ASIST Established by Titrations with n-Alkanesp. 414
Use of ASIST to Predict Onset Pressurep. 417
Asphaltene Stability in Oil Mixturesp. 420
Some Remaining Problemsp. 424
Effect of Temperature on ASISTp. 425
Polydispersity and Amount of Asphaltenep. 425
Wetting, Deposition, and Coprecipitationp. 426
Model Systems and Standardsp. 426
Conclusionsp. 427
Acknowledgmentp. 427
Referencesp. 428
Asphaltene Onset Detection by Batch Titrationp. 429
Historical Interpretations of n-Alkane Titration Datap. 432
Calculation of Solubility Parameters Using PVTsimp. 432
Oil and Asphaltene Propertiesp. 434
Prediction of Live Oil Asphaltene Stability from ASISTp. 436
Dynamic Light Scattering Monitoring of Asphaltene Aggregation in Crude Oils and Hydrocarbon Solutions
Introductionp. 439
Dynamic Light Scattering Techniquep. 441
Aggregation of Asphaltenes in Toluene-Heptane Mixturesp. 448
Aggregation of Asphaltenes in Crude Oilsp. 454
Stabilization of Asphaltene Colloidsp. 460
Viscosity and Microrheology of Petroleum Systemsp. 462
Conclusionsp. 465
Acknowledgmentsp. 466
Referencesp. 466
Near Infrared Spectroscopy to Study Asphaltene Aggregation in Solvents
Introductionp. 469
Literaturep. 470
Experimentalp. 472
Results and Discussionp. 473
Asphaltene Aggregation or Self-Associationp. 473
Onset of Asphaltene Precipitationp. 475
Effect of the Solventp. 479
Asphaltene Subfractionsp. 485
Conclusionsp. 486
Acknowledgmentsp. 487
Referencesp. 487
Phase Behavior of Heavy Oils
Introductionp. 489
Origin of Multiphase Behavior in Hydrocarbon Mixturesp. 490
Phase Behavior Predictionp. 493
Bulk Phase Behavior Prediction for Hydrocarbon Mixturesp. 493
Asphaltene Precipitation and Deposition Modelsp. 494
Experimental Methods and Limitationsp. 495
Phase Behavior Observations and Issuesp. 497
Heavy Oilp. 497
Heavy Oil + Solvent Mixturesp. 500
Phase Behavior Reversibilityp. 504
Conclusionsp. 506
Acknowledgmentsp. 507
Referencesp. 507
Selective Solvent Deasphalting for Heavy Oil Emulsion Treatment
Introductionp. 511
Bitumen Chemistryp. 512
Stability of Water-in-Bitumen Emulsionsp. 515
In situ Bitumen Emulsion and Bitumen Frothp. 515
Size Distributions of Emulsified Water Droplets and Dispersed Solidsp. 516
Stabilization Mechanism of Bitumen Emulsionsp. 518
Effect of Solvent on Bitumen Emulsion Stabilityp. 519
Treatment of Bitumen Emulsions with Aliphatic Solventsp. 522
Behavior of Bitumen Emulsion upon Dilutionp. 522
Settling Characteristics of Bitumen Emulsions Diluted with Aliphatic Solventp. 524
Settling Curve and Settling Rate of WD/DS/PA Aggregatesp. 526
Structural Parameters of WD/DS/PA Aggregatesp. 531
Measuring Settling Rate of WD/DS/PA Aggregates Using In-Line Fiber-Optic Probep. 534
Asphaltene Rejectionp. 537
Product Quality-Water and Solids Contentsp. 538
Product Quality-Micro-Carbon Residue (MCR)p. 540
Product Quality-Metals Contentsp. 542
Product Quality-Sulfur and Nitrogen Contentsp. 542
Viscosity of Bitumenp. 543
Conclusionp. 543
Acknowledgmentsp. 545
Referencesp. 545
The Role of Asphaltenes in Stabilizing Water-in-Crude Oil Emulsions
Introductionp. 549
Chemistry of Crude Oils and Asphaltenesp. 551
Analytical Separation of Crude Oil Componentsp. 551
Solubility and Aggregation of Asphaltenesp. 554
Characterization of Crude Oils by Near Infrared Spectroscopyp. 555
Asphaltene Aggregation Studied by High-Pressure NIR Spectroscopyp. 556
Disintegration of Asphaltenes Studied by NIR Spectroscopyp. 559
Asphaltene Aggregation Studied by NMRp. 563
Adsorption of Asphaltenes and Resins Studied by Dissipative Quartz Crystal Microbalance (QCM-D)p. 563
Interfacial Behavior and Elasticity of Asphaltenesp. 566
Chemistry of Naphthenic Acidsp. 569
Origin and Structurep. 570
Phase Equilibriap. 570
Water-in-Crude Oil Emulsionsp. 572
Stability Mechanismsp. 572
Characterization by Critical Electric Fieldsp. 573
Multivariate Analysis and Emulsion Stabilityp. 574
High-Pressure Performance of W/O Emulsionsp. 578
Acknowledgmentsp. 584
Referencesp. 584
Live Oil Sample Acquisition and Downhole Fluid Analysis
Introductionp. 589
Wireline Fluid Sampling Toolsp. 591
Downhole Fluid Analysis with Wireline Toolsp. 593
Measurement Physicsp. 593
DFA Implementation in Wireline Toolsp. 601
Live Oil Sampling Processp. 604
Contaminationp. 604
Phase Transitionp. 606
Chain of Custodyp. 607
"What Is the Nature of the Hydrocarbon Fluid?"p. 608
"What Is the Size and Structure of the Hydrocarbon-Bearing Zone?"p. 610
Conclusionsp. 614
Referencesp. 615
Precipitation and Deposition of Asphaltenes in Production Systems: A Flow Assurance Overview
Introductionp. 617
Chemistry of Petroleum Fluidsp. 619
Saturatesp. 621
Aromaticsp. 621
Resinsp. 621
Asphaltenesp. 622
Petroleum Precipitates and Depositsp. 622
Petroleum Waxesp. 622
Asphaltene Depositsp. 623
Diamondoidsp. 623
Gas Hydratesp. 623
Terminology: Precipitation vs. Depositionp. 624
Mechanisms of Asphaltene Precipitation: What We Think We Know and Why?p. 625
Colloidal Modelp. 626
Effect of Compositional Changep. 626
Effect of Pressure Changep. 628
The de Boer Plotp. 630
Reversibility of Asphaltene Precipitationp. 631
Samplingp. 631
Laboratory Sample Handling and Analysesp. 634
Sample Handling and Transferp. 634
Compositional Analysesp. 635
Oil-Based Mud (OBM) Contamination Quantificationp. 635
Dead Oil Characterizationp. 637
Dead Oil Asphaltene Stability Testsp. 640
Live Oil Asphaltene Stability Techniquesp. 643
Light Transmittance (Optical) Techniquesp. 643
High Pressure Microscope (HPM)p. 647
Deposition Measurementsp. 651
Asphaltene Precipitation Modelsp. 652
Acknowledgmentp. 656
Referencesp. 656
Indexp. 661
Table of Contents provided by Ingram. All Rights Reserved.

ISBN: 9780387317342
ISBN-10: 0387317341
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 670
Published: 1st November 2006
Publisher: Springer-Verlag New York Inc.
Country of Publication: US
Dimensions (cm): 23.5 x 15.5  x 3.81
Weight (kg): 1.31