+612 9045 4394
 
CHECKOUT
Applied Superconductivity - A.M. Wolsky

Applied Superconductivity

Hardcover

Published: June 1989
Ships: 7 to 10 business days
7 to 10 business days
RRP $232.99
$161.25
31%
OFF
or 4 easy payments of $40.31 with Learn more

The impact of recent superconducting materials research is discussed, indicating research goals which appear realistic and, if reached, would enable diverse commercial applications of the new materials.

Introductionp. 1
Purpose and Scopep. 2
Organization of This Reportp. 2
Overviewp. 3
Renewable Sources for Electricity Generationp. 12
Summaryp. 13
Potential Impacts of HTSCs on Renewable Energy Technologiesp. 14
Backgroundp. 14
Introductionp. 14
Approachp. 15
Scopep. 15
System Impact Classificationp. 15
Neutral Impactp. 15
Enhanced Energy Storage Capabilityp. 16
Improved System Integrationp. 16
New Energy Conversion Potentialp. 16
Organizationp. 16
Superconductor Impacts on Renewable Energy Technologiesp. 17
Hydroelectric Energyp. 17
Solar Salt Gradient Pondsp. 18
Solar Thermal Central Receiver Conceptsp. 19
Solar Thermal Dish Conceptp. 21
Solar Photovoltaic Cellsp. 23
Geothermal Energy Conversionp. 24
Wind Energy Conversionp. 25
Ocean Thermal Energy Conversionp. 26
Biomass Energy Conversionp. 28
Magnetohydrodynamic Energy Conversionp. 29
Fusion Power Generationp. 30
Conclusionsp. 31
Generatorsp. 33
Summaryp. 34
Impact of HTSCs on Generatorsp. 37
Introductionp. 37
Superconductors Applied to Generatorsp. 38
Other Applicationsp. 39
Case Study: 300-MVA Turbogeneratorsp. 40
Development Efforts and Impedimentsp. 41
Conclusionsp. 48
Referencep. 48
Transformersp. 49
Summaryp. 50
Potential Application of HTSCs to Power Transformersp. 51
Introductionp. 51
Application of Superconductors to Power Transformersp. 52
Method of Analysisp. 52
Resultsp. 54
Transformer Design Featuresp. 56
Conclusionsp. 56
Referencesp. 57
AC Transmissionp. 58
Summaryp. 59
Preliminary Economic Analysisp. 61
Introductionp. 61
Methodp. 62
Assumptions About the Power Transmission Systemp. 62
Economic Assumptionsp. 63
Cost of Energy for Losses and Refrigerationp. 63
Capital Costsp. 64
Lossesp. 64
Superconductor Properties and Current-Dependent Lossesp. 64
Voltage-Dependent Lossesp. 66
Cryogenic Enclosure Lossesp. 66
Refrigerator Efficiencyp. 67
Total Lossesp. 67
Capital Costsp. 67
Cost of the Lossesp. 68
Capital Costs and Total System Costp. 68
Comparison with HPOPT and Aerial/Underground Systemsp. 68
Cost of the Aerial/Underground System Lossesp. 68
Assumptions Regarding Properties of Cable Materialsp. 70
1,000-MVA Transmission Systemsp. 73
Conclusionsp. 77
Comparison of Electrical Losses and Costsp. 77
Comparison of High-T[subscript c] Superconducting Cable System with Nb[subscript 3]Sn Cable Systemp. 79
Future Systems Studiesp. 81
Enclosures and Optimizationp. 81
Referencesp. 82
Supplement: Levelized Annual Cost Methodp. 83
Introductionp. 83
230-kV Superconducting AC Power Transmission Systemp. 84
500-kV HPOPT Cellulose-Insulated Naturally Cooled Systemp. 85
500-kV Aerial/Underground Systemp. 86
Conclusionsp. 87
Superconducting Magnetic Energy Storagep. 88
Summaryp. 89
HTSCs in Diurnal Load-Leveling Superconducting Magnetic Energy Storagep. 90
Introductionp. 90
Discussionp. 90
Conclusionsp. 91
Referencesp. 92
Motorsp. 96
Summaryp. 97
Potential Application of HTSCs to Motorsp. 98
Introductionp. 98
Applications to Motorsp. 99
Conclusionsp. 102
Referencesp. 103
Supplement: The Potential for High-Temperature Super-conducting AC and DC Motorsp. 105
Introductionp. 105
Motivation for Development of HTSC Electric Motorsp. 105
Application Considerations for HTSC Machinesp. 106
HTSC DC Motorsp. 107
HTSC Synchronous Motorsp. 108
HTSC Induction Motorsp. 111
HTSC Induction/Synchronous Hybridp. 113
HTSC Reluctance Motorp. 113
HTSC Homopolar Inductor Motorsp. 114
Conclusionsp. 116
References for Supplementp. 116
Industrial Separations and Material Handlingp. 118
Summaryp. 119
Industrial Applications for HTSCsp. 121
Introductionp. 121
Materials Separationp. 121
Materials Handling and Fabricationp. 126
Referencesp. 127
Potential Application of HTSCs to Magnetic Separationsp. 129
Introductionp. 129
Discussionp. 130
Summary and Conclusionsp. 131
Referencesp. 132
Potential for Magnetic Separation of Gases from Gasesp. 133
Introductionp. 133
OGMS Systems for Separation of Gasesp. 133
HTSC OGMS Systemsp. 135
Referencesp. 135
Supplement: Estimates for High-Gradient Magnetic Separation of Oxygen from Airp. 138
Flow Equationsp. 138
Magnetic Propertiesp. 139
Values for O[subscript 2] and NOp. 140
Diffusion Relationsp. 141
Limiting Magnetic Effectsp. 142
Estimation of Diffusion Ratesp. 143
Referencesp. 144
Magnetic Levitation for Transportationp. 146
Summaryp. 147
Application of HTSCs to Magnetically Levitated Trainsp. 149
Backgroundp. 149
Advanced Ground Transportation Optionsp. 149
Conventional Trainsp. 149
Levitated-Vehicle Technologyp. 150
Advantages of Magnetically Levitated Vehiclesp. 151
Advantages of High-T[subscript c] Superconductors for Magnetic-Levitation Technologyp. 152
Applicability of Magnetic-Levitation Technology to U.S. Travel Needsp. 153
Opportunity for U.S. Technology Developmentp. 155
Bibliographyp. 156
Appendicesp. 157
Economic Assumptionsp. 158
Summaryp. 158
Baseline Assumptions for Preliminary Economic Evaluation of Applications for Superconductivityp. 158
Introductionp. 158
Example Calculationsp. 162
Superconductor Performancep. 165
Summaryp. 165
Charge to Authors: Benchmark Performance Parameters for Higher-Temperature Superconductorsp. 165
Experimental Resultsp. 165
Analytical Considerationsp. 166
Referencep. 167
Military Research and Developmentp. 169
Introductionp. 170
Potential Army Applications of High-Temperature Superconductivityp. 175
Small-Scale Applicationsp. 175
Large-Scale Applicationsp. 176
Potential Navy Applications of High-Temperature Superconductivityp. 177
Small-Scale Applicationsp. 177
Large-Scale Applicationsp. 177
Potential Air Force Applications of High-Temperature Superconductivityp. 178
Small-Scale Applicationsp. 178
Large-Scale Applicationsp. 178
Potential National Security Agency Applications of High-Temperature Superconductivityp. 179
Analogp. 179
Digitalp. 179
DoD Superconductivity Accomplishments and Experiencep. 180
DoD Ceramic Processing Accomplishments and Experiencep. 184
Rationale for Program Scope of DSRDp. 185
DSRD Program Work Statementsp. 191
Characterization of and Search for High Temperature Superconducting Materialsp. 191
Transition Temperature, T[subscript c]p. 193
Energy Gap, 2[Delta]p. 193
Magnetic Field Penetration Depth, [lambda]p. 193
Josephson Junction (JJ) Tunneling and Weak-Link Phenomenap. 194
Interaction of HTS Materials with Electromagnetic Fieldsp. 194
Interactions of HTS Materials and Devices with Optical Radiationp. 195
Thermodynamic Propertiesp. 195
Critical Magnetic Fieldsp. 195
Approaches to Controlled Introduction of Material Inhomogeneities Suitable for Pinning Supercurrent Vorticesp. 196
Determination of the Magnetic-Field/Current-Density/Temperature Critical Surfacep. 196
Mitigation of Magnetic Flux Flow, Creep, and Jumpsp. 196
Mechanical and Thermomechanical Aspectsp. 197
Thermal and Magnetocaloric Effectsp. 198
Electromigration Effectsp. 198
Atomic Level Structurep. 198
Chemistryp. 199
Effects of Ionizing Radiationp. 199
Experimental Comparison with Ginzburg-Landau-Abrikosov-Gorkov (GLAG) Macroscopic Theoryp. 200
Experimental Comparison with Microscopic Theoriesp. 201
Electronic-Energy-Band Structure and Other Normal-State Considerationsp. 201
Processingp. 204
Introductionp. 204
Thin Film Materials, Devices and Circuitsp. 206
Introductionp. 206
Thin-Film Depositionp. 208
Materials Characterization of Filmsp. 209
Device and Structure Processingp. 210
Bulk Superconductorsp. 217
Single Crystalsp. 220
Small Scale Applications and Demonstrationsp. 222
Magnetometers and Gradiometersp. 227
Hybrid Semiconductor-Superconductor Systemsp. 231
mm Wave Receiversp. 236
Infrared Sensorsp. 239
Digital Systems (Logic)p. 242
Digital Systems (Memories)p. 246
Three-Terminal Devicesp. 249
Systems Demonstration Vehiclep. 252
Refrigerationp. 254
Large-Scale Applications and Demonstrationsp. 258
Shields (Near Term)p. 262
Supermagnets for Microwave and Millimeter Wave Sources (Near Term)p. 265
Supermagnets for Electric Ship Propulsion Systems (Mid and Far Term)p. 267
Superconducting Magnetic Energy Storage (SMES) (Mid Term)p. 270
Electromagnetic Launchers (Mid Term)p. 273
Directed Energy Weapons (DEW) (Mid Term)p. 276
Magnetic Bearings (Mid Term)p. 278
Mine Sweeping Supermagnets (Mid Term)p. 280
Pulsed Power Systems (Far Term)p. 282
ELF Communication (Far Term)p. 285
Other Applicationsp. 288
DSRD Budget Recommendationsp. 288
Military System Applicationsp. 295
Executive Summaryp. 296
Introductionp. 298
Findingsp. 300
Status of Superconducting Theory, Technology, and Materialsp. 300
Low Temperature Superconductors (LTS)p. 300
High Temperature Superconductors (HTS)p. 302
Status of Supporting Technologiesp. 304
Cryogenic Coolingp. 304
High Strength Materialsp. 304
Military Applications of Superconductorsp. 306
Introductionp. 306
Electronicsp. 306
Overviewp. 306
IR Sensorsp. 306
Microwave and MMW Sensorsp. 307
DC to UHF Sensorsp. 310
Magnetic Sensorsp. 310
Signal Processingp. 310
A/D Convertersp. 310
Delay Line Signal Processorp. 310
Digital Signal and Data Processingp. 313
High Power Applicationsp. 315
Magnets-Applicationsp. 315
Electrical Machineryp. 315
Launchersp. 317
U.S. and Foreign Research Expenditures in High Temperature Superconductivityp. 321
Conclusionsp. 322
Recommendationsp. 325
Appendixp. 327
Terms of Referencep. 327
Membershipp. 329
Briefings Presented to the DSB Task Force on Military Applications of Superconductorsp. 330
Directions of Research and Development Into High Temperature Superconductorsp. 332
Introductionp. 332
General Issuesp. 332
HTS Materials for Electronicsp. 333
High Power Applicationsp. 334
Cryogenic Technologyp. 336
Superconductors and Their Cryogenic Requirementsp. 336
Cryocoolersp. 338
Ground-Based Systemsp. 339
Large Systemsp. 339
Small Systemsp. 339
Space System Cryogenicsp. 343
High Strength Materialsp. 346
A Josephson 4-Bit Microprocessorp. 347
Back-Up Data on Japanese Funding for Superconductivity R&Dp. 353
Governmentp. 354
Corporate Expendituresp. 356
ISTECp. 356
High Temperature Superconductivity Funding ($M)p. 361
Table of Contents provided by Ingram. All Rights Reserved.

ISBN: 9780815511915
ISBN-10: 0815511914
Audience: Professional
Format: Hardcover
Language: English
Number Of Pages: 381
Published: June 1989
Country of Publication: US
Dimensions (cm): 24.13 x 16.41  x 3.2
Weight (kg): 0.9